• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 2
  • Tagged with
  • 8
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Comparison of the Role of Beamwidth in Biological and Engineered Sonar

Todd, Bryan Donald 31 October 2017 (has links)
Sonar is an important sensory modality for engineers as well as in nature. In engineering, sonar is the dominating modality for underwater sensing. In biology, it is likely to have been a central factor behind the unprecedented evolutionary success of bats, a highly diverse group that accounts for over 20% of all mammal species. However, it remains unclear to what extent engineered and biosonar follow similar design and operational principles. In the current work, the key sonar design characteristic of beamwidth is examined in technical and biosonar. To this end, beamwidth data has been obtained for 23 engineered sonar systems and from numerical beampattern predictions for 151 emission and reception elements (noseleaves and pinnae) from bat biosonar. Beamwidth data from these sources is compared to the beamwidth of a planar ellipsoidal transducer as a reference. The results show that engineered and biological both obey the basic physical limit on beamwidth as a function of the ratio of aperture size and wavelength. However, beyond that, the beamwidth data revealed very different behaviors between the engineered and the biological sonar systems. Whereas the beamwidths of the technical sonar systems were very close to the planar transducer limit, the biological samples showed a very wide scatter away from this limit. This scatter was as large – if not wider – than what was seen in a small reference data set obtained with random aluminum cones. A possible interpretation of these differences in the variability could be that whereas sonar engineers try to minimize beamwidth subject to constraints on device size, the evolutionary optimization of bat biosonar beampatterns has been directed at other factors that have left beamwidth as a byproduct. Alternatively, the biosonar systems may require beamwidth values that are larger than the physical limit and differ between species and their sensory ecological niches. / Master of Science / Sonar is an important method of sensing for engineers in undersea environments, but it is also used by several species of animals for for everyday use. The most prominent species that uses sonar, or echolocation, are bats, one of the most diverse groups of mammals. The study of bat biosonar systems serves as a counterpoint to many of the concepts in technical sonar. In technical sonar, arrays are made to be larger in size, with more elements, and operate at higher frequencies in order to decrease their beamwidth which increases their resolution. Unlike technical sonars bats must rely on smaller sized systems that they can carry around and they operate in air which has worse qualities for propagating sound waves. Even with these disadvantages, bats are able to operate in complex environments, such as dense vegetation, with ease. This work compared 151 emission and reception elements of bat biosonar systems with 23 engineered sonars to find that the biosonar had very different behavior from the engineered sonars. The engineered sonars, as well as a set of experimental baffles, closely followed the curve for the beamwidth limit of planar transducers but the biosonar samples had a large scatter from the curve. These results could be interpreted to show that while the engineered sonars attempt to minimize the beamwidth in order to maximize the resolution, the biosonar did not place much importance on having low beamwidths and high resolutions during its evolution. Alternatively, the results could indicate that it is preferable for biosonar to have larger beamwidths, a contrast to standard sonar design.
2

Capacity and Signaling for Free-Space Optical Channels

Youssef, Ahmed A. Farid January 2009 (has links)
<p> Wireless optical communication systems have the potential of establishing secure high data rate communication links. In order to realize the ultimate promise of these links, channel modeling and communication algorithms must be developed. This thesis addresses free-space optical (FSO) system design and provides novel contributions in four major areas: 1) channel modeling, 2) channel capacity and optimal signal design, 3) signaling algorithms, and 4) formal methods to jointly design code rate and beamwidth for FSO systems.</p> <p> A novel statistical channel model taking into account atmospheric and misalignment fading is developed that generalizes the existing models and accounts for transmitter beamwidth. The channel capacity is analyzed under average and peak optical power constraints and a new class of non-uniform discrete input distributions are developed with mutual information that closely approaches the channel capacity. Algorithms to realize the proposed non-uniform signaling and achieve the promising rates are also presented. Numerical simulations are conducted with finite length low density parity check codes showing significant improvement in system performance. Finally, the developed signaling is applied to FSO channels considering the above impairments. Beamwidth optimization is considered to maximize the channel capacity subject to outage. It is shown that a rate gain of 80% can be achieved with beamwidth optimization.</p> / Thesis / Doctor of Philosophy (PhD)
3

A NEW VARIABLE BEAMWIDTH ANTENNA FOR TELEMETRY TRACKING SYSTEMS

Richard, Gaetan C., Gonzales, Daniel G. 11 1900 (has links)
International Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevada / This paper presents a new variable beamwidth antenna designed for use in telemetry tracking systems when a high gain/low gain antenna configuration is required. This antenna can be commanded to continuously vary its beamwidth between a high gain/narrow beamwidth mode of operation and a low gain/ wide beamwidth mode of operation. A design goal of a 4:1 increase in beamwidth has been set and a 3.0:1 increase has been achieved without causing any significant degradation in the shape of the antenna patterns and without generating exceedingly high sidelobes in the low gain setting. The beamwidth variation occurs continuously without any loss of data, boresight shift or jitter such as experienced with the operation of conventional implementations of the high gain/low gain antenna technique.
4

Mutual Elements and Substrate Effect Analysis on Patch Antenna Arrays

Wallace, Matthew J. 28 October 2010 (has links)
There have been many different technology advancements with the invention of solid state electronics, leading to the digital era which has changed the way users employ electronic circuits. Antennas are no different; however, they are still analog devices. With the advancements in technology, antennas are being fabricated on much higher frequencies and with greater bandwidths, all while trying to keep size and weight to a minimum. Centimeter and millimeter wave technologies have evolved for many different radio frequency (RF) applications. Microstrip patch antennas have been developed, as wire and tubular antenna elements are difficult to fabricate with the tolerances required at micro-wavelengths. Microstrip patch antennas are continuously being improved. These types of antennas are great for embedded or conformal applications where size and weight are of the essence and the ease of manufacturing elements to tight tolerances is important. One of the greatest benefits of patch antennas is the ease in creating an array. Many simulation programs have been created to assist in the design of patch antennas and arrays. However, there are still discrepancies between simulated results and actual measurements. This research will focus on these differences. It begins with a literature research of patch antenna design, followed by an assessment of simulation programs used for patch antenna design. The resulting antenna design was realized by the fabrication of an antenna from the Genesys software. Laboratory measurements of the real-world antenna are then compared to the theoretical antenna characteristics. This process is used to illustrate deficiencies in the software models and likely improvements that need to be made.
5

An Automated Ultrasound Calibration Framework Incorporating Elevation Beamwidth for Tracked Ultrasound Interventions

Chen, Kuiran 22 October 2012 (has links)
Image-guided surgeries employ advanced imaging and computing technologies to assist the surgeon when direct visualization is inadequate or unavailable. As modern surgeries continue to move toward minimally invasive procedures, tracked ultrasound (US), an emerging technology that uniquely combines US imaging and position tracking, has been increasingly used for intraoperative guidance in surgical interventions. The intrinsic accuracy of a tracked US system is primarily determined by a unique procedure called ``probe calibration", where a spatial registration between the coordinate systems of the transducer (provided by a tracking device affixed to the probe) and the US image plane must be established prior to imaging. Inaccurate system calibration causes misalignments between the US image and the surgical end-effectors, which may directly contribute to treatment failure. The probe calibration quality is further reduced by the "elevation beamwidth" or "slice thickness", a unique feature of the ultrasound beam pattern that gives rise to localization errors and imaging uncertainties. In this thesis, we aim to provide an automated, pure-computation-based, intraoperative calibration solution that also incorporates the slice thickness to improve the calibration accuracy, precision and reliability. The following contributions have been made during the course of this research. First, we have designed and developed an automated, freehand US calibration system with instant feedback on its calibration accuracy. The system was able to consistently achieve submillimeter accuracy with real-time performance. Furthermore, we have developed a novel beamwidth-weighted calibration framework (USB-FW) that incorporates US slice thickness to improve the estimation of calibration parameters. The new framework provides an effective means of quality control for calibration results. Extensive phantom validation demonstrated that USB-FW introduces statistically significant reduction (p = 0.001) in the calibration errors and produces calibration outcomes that are less variable than a conventional, non-beamwidth-weighted calibration. Finally, we were the first to introduce an automated, intraoperative Transrectal Ultrasound (TRUS) calibration technology for needle guidance in prostate brachytherapy. Our tests with multiple commercial TRUS scanners and brachytherapy stepper systems demonstrated that the proposed method is practical in use and can achieve high calibration accuracy, precision and robustness. / Thesis (Ph.D, Computing) -- Queen's University, 2012-10-22 16:18:55.439
6

Design of narrow beamwidth antenna for indoor non-contact vital sign sensor

Chuang, Ya-Rong 02 August 2012 (has links)
Differences between indoor non-contact vital sign sensor and general sensors are ¡§indoor¡¨ and ¡§vital sign¡¨. In indoor environment, receiving signals encounter multipath problem caused by the reflection of walls and furniture. Two main vital signs that we are concerned with are heartbeat and respiration; both of them are weaker than general signals used in communication. To overcome problems caused by multipath and weak signal strength, in this thesis, we design a narrow beamwidth antenna operating at 2.45 GHz for indoor non-contact vital sign sensor. We propose a ground surrounded antenna (GSA) which differs from traditional slot and patch antenna. The proposed GSA excites slot mode and patch mode at the same time, so that we can achieve dual-bands or wide band by adjusting its physical parameters. Meanwhile, the reflected wave bounced back from the surrounding ground plane can cause constructive interference so that the antenna possesses better gain and beamwidth. Using GSA as the unit antenna of antenna array to achieve narrow beamwidth design, and adding the concept of superstrate can enhance antenna gain and reduce backlobe radiation. The minimum beamwidth at two orthogonal planes are 26 and 52 degrees respectively, and the antenna gain achieves 12.2 dBi. To reduce the interference between receiving and transmitting signals in single antenna, we use two separate antennas. Finally, we discuss and improve isolation problem between two antennas.
7

Novel Designs of Planar Antennas Including the Feed Network

Chiou, Tzung-Wern 29 March 2002 (has links)
Novel designs of planar antennas including the feed network for improving the antenna performance improvement (CP axial-ratio bandwidth, XPL, port decoupling for dual-polarized operation, and harmonic control) or achieving dual-band operation are presented. This thesis, comprises five sections. Firstly, for obtaining broadband CP designs, the Wilkinson power divider and branch-line coupler are used. The 3-dB axial ratio CP bandwidths of all proposed antennas are larger than 30%. Secondly, the dual broadband patch antennas including a stopband network are proposed. Thirdly, the dual-polarized patch antenna with high XPL and isolation between two ports by using a Wilkinson power divider with a 180¢X phase shift between its two ports is proposed. Fourthly, the dual-band and dual-polarized patch antenna suitable for base-station antenna applications for mobile communications systems is studied. Finally, the harmonic control study of a square microstrip antenna is presented.
8

An On-orbit Calibration Procedure for Spaceborne Microwave Radiometers Using Special Spacecraft Attitude Maneuvers

Farrar, Spencer 01 January 2015 (has links)
This dissertation revisits, develops, and documents methods that can be used to calibrate spaceborne microwave radiometers once in orbit. The on-orbit calibration methods discussed within this dissertation can provide accurate and early results by utilizing Calibration Attitude Maneuvers (CAM), which encompasses Deep Space Calibration (DSC) and a new use of the Second Stokes (SS) analysis that can provide early and much needed insight on the performance of the instrument. This dissertation describes pre-existing and new methods of using DSC maneuvers as well as a simplified use of the SS procedure. Over TRMM's 17 years of operation it has provided invaluable data and has performed multiple CAMs over its lifetime. These maneuvers are analyzed to implement on-orbit calibration procedures that will be applied for future missions. In addition, this research focuses on the radiometric calibration of TMI that will be incorporated in the final processing (Archive/Legacy of the NASA TMI 1B11 brightness temperature data product). This is of importance since TMI's 17-year sensor data record must be vetted of all known calibration errors so to provide the final stable data for science users, specifically, climatological data records.

Page generated in 0.0349 seconds