• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 7
  • 3
  • Tagged with
  • 27
  • 25
  • 24
  • 13
  • 13
  • 13
  • 10
  • 9
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Anforderungen an die Gestaltung eines mehrdimensionalen strategischen Anreiz- und Belohnungssystems für Führungskräfte /

Baumgartner, Heinz. January 1992 (has links)
Hochsch. f. Wirtschafts-, Rechts- u. Sozialwiss., Diss.--St. Gallen, 1992.
2

Distinctive striatal dopamine signaling after dieting and gastric bypass

Hankir, Mohammed K., Ashrafian, Hutan, Hesse, Swen, Horstmann, Annette, Fenske, Wiebke K. 15 April 2016 (has links) (PDF)
Highly palatable and/or calorically dense foods, such as those rich in fat, engage the striatum to govern and set complex behaviors. Striatal dopamine signaling has been implicated in hedonic feeding and the development of obesity. Dieting and bariatric surgery have markedly different outcomes on weight loss, yet how these interventions affect central homeostatic and food reward processing remains poorly understood. Here, we propose that dieting and gastric bypass produce distinct changes in peripheral factors with known roles in regulating energy homeostasis, resulting in differential modulation of nigrostriatal and mesolimbic dopaminergic reward circuits. Enhancement of intestinal fat metabolism after gastric bypass may also modify striatal dopamine signaling contributing to its unique long-term effects on feeding behavior and body weight in obese individuals.
3

Distinctive striatal dopamine signaling after dieting and gastric bypass

Hankir, Mohammed K., Ashrafian, Hutan, Hesse, Swen, Horstmann, Annette, Fenske, Wiebke K. 23 June 2016 (has links) (PDF)
Highly palatable and/or calorically dense foods, such as those rich in fat, engage the striatum to govern and set complex behaviors. Striatal dopamine signaling has been implicated in hedonic feeding and the development of obesity. Dieting and bariatric surgery have markedly different outcomes on weight loss, yet how these interventions affect central homeostatic and food reward processing remains poorly understood. Here, we propose that dieting and gastric bypass produce distinct changes in peripheral factors with known roles in regulating energy homeostasis, resulting in differential modulation of nigrostriatal and mesolimbic dopaminergic reward circuits. Enhancement of intestinal fat metabolism after gastric bypass may also modify striatal dopamine signaling contributing to its unique long-term effects on feeding behavior and body weight in obese individuals.
4

Actions and Outcomes: The Evaluative Function of Moral Emotions

Tscharaktschiew, Nadine 25 November 2014 (has links) (PDF)
Results from 10 empirical studies and 1 review article are described and can be summarized as follows: Only moral emotions represent an evaluation of person's behavior, whereas non-moral emotion provide information about outcomes. Positive moral emotions (e.g. pride, respect) signal that a person's (self or other) behavior was right, whereas negative moral emotions (e.g., guilt, indignation) signal that a person's behavior was wrong. These evaluations and signals are elicited by judgments of ought, goal attainment and effort (see Heider, 1958). Some moral emotions (e.g., shame or admiration) are also elicited by judgments on a person's ability. A person's responsibility (Weiner, 1995, 2006) and the perceived morality of a person's behavior (i.e., with regard to rightness and wrongness) represent further cognitive antecedents of moral emotions. Some moral emotions (e.g., regret, sympathy) are also influenced by a person's empathy (see Paulus, 2009) towards others. There are specific moral emotions that are closely connected to help-giving (e.g., sympathy), whereas other moral emotions are more closely related to reward (e.g., admiration) or punishment (e.g., anger). With regard to the cognitive effort underlying emotions, moral emotions require more cognitive effort (i.e., longer reaction times) than non-moral emotions.
5

Die Rolle des Anterioren Cingulären Cortex bei Entscheidungsprozessen und instrumentellen Lernvorgängen The role of the Anterior Cingulate Cortex in decision making and in instrumental behaviour /

Schweimer, Judith, January 2006 (has links)
Stuttgart, Univ., Diss., 2006.
6

Predictive Place-Cell Sequences for Goal-Finding Emerge from Goal Memory and the Cognitive Map: A Computational Model

Gönner, Lorenz, Vitay, Julien, Hamker, Fred 23 November 2017 (has links) (PDF)
Hippocampal place-cell sequences observed during awake immobility often represent previous experience, suggesting a role in memory processes. However, recent reports of goals being overrepresented in sequential activity suggest a role in short-term planning, although a detailed understanding of the origins of hippocampal sequential activity and of its functional role is still lacking. In particular, it is unknown which mechanism could support efficient planning by generating place-cell sequences biased toward known goal locations, in an adaptive and constructive fashion. To address these questions, we propose a model of spatial learning and sequence generation as interdependent processes, integrating cortical contextual coding, synaptic plasticity and neuromodulatory mechanisms into a map-based approach. Following goal learning, sequential activity emerges from continuous attractor network dynamics biased by goal memory inputs. We apply Bayesian decoding on the resulting spike trains, allowing a direct comparison with experimental data. Simulations show that this model (1) explains the generation of never-experienced sequence trajectories in familiar environments, without requiring virtual self-motion signals, (2) accounts for the bias in place-cell sequences toward goal locations, (3) highlights their utility in flexible route planning, and (4) provides specific testable predictions.
7

Reward processing in obesity, substance addiction and non-substance addiction

García-García, Isabel, Horstmann, Annette, Jurado, María Angeles, Garolera, Maite, Chaudhry, Shereen J., Margulies, Daniel S., Villringer, Arno, Neumann, Jane 28 January 2016 (has links) (PDF)
Similarities and differences between obesity and addiction are a prominent topic of ongoing research. We conducted an activation likelihood estimation meta-analysis on 87 studies in order to map the functional magnetic resonance imaging (fMRI) response to reward in participants with obesity, substance addiction and non-substance (or behavioural) addiction, and to identify commonalities and differences between them. Our study confirms the existence of alterations during reward processing in obesity, non-substance addiction and substance addiction. Specifically, participants with obesity or with addictions differed from controls in several brain regions including prefrontal areas, subcortical structures and sensory areas. Additionally, participants with obesity and substance addictions exhibited similar blood-oxygen-level-dependent fMRI hyperactivity in the amygdala and striatum when processing either general rewarding stimuli or the problematic stimuli (food and drug-related stimuli, respectively). We propose that these similarities may be associated with an enhanced focus on reward – especially with regard to food or drug-related stimuli – in obesity and substance addiction. Ultimately, this enhancement of reward processes may facilitate the presence of compulsive-like behaviour in some individuals or under some specific circumstances. We hope that increasing knowledge about the neurobehavioural correlates of obesity and addictions will lead to practical strategies that target the high prevalence of these central public health challenges.
8

Distinctive striatal dopamine signaling after dieting and gastric bypass

Hankir, Mohammed K., Ashrafian, Hutan, Hesse, Swen, Horstmann, Annette, Fenske, Wiebke K. January 2015 (has links)
Highly palatable and/or calorically dense foods, such as those rich in fat, engage the striatum to govern and set complex behaviors. Striatal dopamine signaling has been implicated in hedonic feeding and the development of obesity. Dieting and bariatric surgery have markedly different outcomes on weight loss, yet how these interventions affect central homeostatic and food reward processing remains poorly understood. Here, we propose that dieting and gastric bypass produce distinct changes in peripheral factors with known roles in regulating energy homeostasis, resulting in differential modulation of nigrostriatal and mesolimbic dopaminergic reward circuits. Enhancement of intestinal fat metabolism after gastric bypass may also modify striatal dopamine signaling contributing to its unique long-term effects on feeding behavior and body weight in obese individuals.
9

Distinctive striatal dopamine signaling after dieting and gastric bypass

Hankir, Mohammed K., Ashrafian, Hutan, Hesse, Swen, Horstmann, Annette, Fenske, Wiebke K. January 2015 (has links)
Highly palatable and/or calorically dense foods, such as those rich in fat, engage the striatum to govern and set complex behaviors. Striatal dopamine signaling has been implicated in hedonic feeding and the development of obesity. Dieting and bariatric surgery have markedly different outcomes on weight loss, yet how these interventions affect central homeostatic and food reward processing remains poorly understood. Here, we propose that dieting and gastric bypass produce distinct changes in peripheral factors with known roles in regulating energy homeostasis, resulting in differential modulation of nigrostriatal and mesolimbic dopaminergic reward circuits. Enhancement of intestinal fat metabolism after gastric bypass may also modify striatal dopamine signaling contributing to its unique long-term effects on feeding behavior and body weight in obese individuals.
10

Implicit and Explicit Appetitive Outcome-Learning in Obesity

Meemken, Marie-Theres 25 September 2020 (has links)
No description available.

Page generated in 0.0394 seconds