• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • 64
  • 29
  • 17
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 258
  • 50
  • 42
  • 30
  • 25
  • 24
  • 21
  • 21
  • 19
  • 18
  • 16
  • 15
  • 14
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Relation entre propriétés rhéologiques et structure microscopique de dispersions de particules d'argile dans des dispersions de polymères / Relations between rheological properties and microscopique structure of clay particle dispersions in polymer solutions

Ben Azouz, Kaouther 09 November 2010 (has links)
L'argile est utilisée avec des polymères en solution dans de nombreuses applications telles que les boues de forage ou encore pour rendre les fibres textiles résistantes au feu. Du fait de la structure très particulière des particules d'argile, avec plusieurs échelles d'association de feuillets, les propriétés rhéologiques de dispersions d'argile dans des solutions de polymère dépendent fortement de l'histoire mécanique du matériau. Une étude de vieillissement des dispersions d'argile dans les solutions aqueuses de CMC a montré l'effet du temps, en particulier sur l'existence d'un seuil de contrainte et son évolution. Les mesures rhéologiques mettent en évidence des comportements de type « gel ». Ils résultent de la formation, au sein du fluide, de réseaux élastiques de nature différente selon la phase continue utilisée. Dans l'eau, les particules partiellement exfoliées s'associent entre elles selon des mécanismes qui dépendent du pH. Alors que dans la solution de polymère, il semble que des agrégats de particules soient connectés entre eux par l'intermédiaire des chaînes macromoléculaires. L'influence de la température et du pH sur les propriétés rhéologiques a été examinée. Plusieurs expériences indépendantes ont montré une évolution non monotone des caractéristiques mécaniques des fluides lorsque la température augmente. Ceci peut s'expliquer en invoquant un accroissement de la mobilité des chaînes favorisant l'ouverture des agrégats se dissociant en agrégats de plus petite taille. Le contrôle du pH quant à lui permet de modifier les interactions particule-particule et particule-polymère et, de ce fait, d'agir sur les propriétés mécaniques des gels formés. / The clay is used with polymer solutions in numerous applications such as drilling muds or to make textile fibers fireproof. Because of the very particular structure of the clay particles, with several scales of association of platelets, the rheological properties of clay dispersions in aqueous polymer solutions strongly depend on the mechanical history of the material. An ageing study of clay dispersion in aqueous CMC solutions showed the effect of time, in particular on the existence of a yield stress and its evolution. The rheological measurements display gel like behaviours. They are the result of formation, within the fluid, of different kind of networks, depending on the continuous phase. The partially exfoliated particles join together according to mechanisms which depend on the pH. While in the polymer solution, it seems that particle aggregates are connected through the macromolecular chains. The influence of the temperature and the pH on the rheological properties is studied. Several independent experiments show a non-monotonous evolution of the mechanical properties of the fluids as the temperature increases. It may be due to an increase of the mobility of the macromolecular chains favouring the dissociation of the particles aggregates. The control of the pH allows the particle-particle and particle-polymer interactions to be modified and to therefore act on the mechanical properties of the gels.
62

Processing characterization and modeling of thermomechanical properties of threee abradable coatings : NiCrAl-bentonite, CoNiCrAlY-BN-polyester, and YSZ-polyester / Elaboration, caractérisation et modélisation des propriétés thermomécaniques de trois revêtements abradables : niCrAl-Bentonite, CoNiCrAlY-BN-Polyester et YSZ-Polyester

Aussavy, Delphine 15 December 2016 (has links)
L'objectif de ces travaux a été d'estimer les propriétés thermomécanique des revêtements abradables. Lesmatériaux abradables sont des structures fortement hétérogènes et le but a été de considérer leurs microstructuresdétaillées. L'intérêt de ces travaux a été de passer outre la difficulté de leur dimensionnement lors de l'élaborationdes couches. Trois revêtements abradables ayant différentes natures et différentes microstructures ont étéétudiées, la complexité de leur microstructure était différente les unes des autres. Leurs propriétés ont étédéterminées par une méthode de modélisation 2D appliquée directement pixel par pixel pour prendre enconsidération la microstructure détaillée. Afin de valider la méthode de modélisation, les résultats calculés ont étécouplés et comparés à des valeurs expérimentales. Deux méthodes de modélisations ont été appliquées : uneméthode conventionnelle; avec une image des revêtements représentant les détails de la microstructure aussi bienque la microstructure dans sa globalité ainsi qu'une méthode de modélisation 2-échelles, avec une première échellereprésentant les détails de la microstructure de la matrice et une seconde échelle représentant le revêtement globalet notamment la distribution des plus gros pores.Une des conclusions principales de ces travaux est la suivante : Si la complexité du matériau augmente, le nombred'échelle nécessaire pour décrire la microstructure réelle augmente. La méthode de modélisation 2 échelles a étévalidée à travers la comparaison entre les valeurs calculées et les résultats expérimentaux. Ces travaux ont aidé àobtenir un outil pour sélectionner digitalement les microstructures les plus prometteuses pour les applicationsd'abradabilité. Ceci permet de réduite le nombre de tests expérimentaux à effectuer. Ces tests expérimentaux sontplus longs à mettre en oeuvre et coutent plus cher. C'est un outil support quant au développement des structuresabradables. / The objective of this work was to estimate apparent thermomechanical properties of abradable coating. Abradablematerials are strongly heterogeneous structures and the aim was to consider their detailed microstructure. Theinterest of this work is to overstep one difficulty when manufacturing abradable coating which is their dimensioning.Three abradable coatings having different nature and different microstructures have been studied. Theirmicrostructure complexity was different one from each other. Their properties were determined by a 2D modelingmethod which was applied directly pixel by pixel to take account of all the microstructural details. To validate themodeling method, the results calculated were coupled and compared to experimental ones. Two modeling methodhave been applied, a conventional one, with coating image representing coating microstructural details as well asthe global coating microstructural distribution and a 2-scale modeling method, with one scale representing themicrostructural details of the matrix and a second on representing the global coating coarse pores distribution. Onemain conclusion of this work is the following one: If the material complexity increases, the number of scalemandatory to describe the real microstructure increases. The 2-scales modeling method has been validated throughcomparison of the calculated values with those obtained experimentally. This work helps to provide a tool for digitallyselect the most promising abradable layers with the effect of reducing the number of experimental tests, which arelonger and more expensive to implement. It is a tool for decision support in the abradable coating development.
63

Performance Assessment Of Compacted Bentonite/sand Mixtures Utilized As Isolation Material In Underground Waste Disposal Repositories

Ada, Mahir 01 July 2007 (has links) (PDF)
The design and development of isolation or backfill materials, which seal the disposal facility, are important for disposing the wastes. The use of compacted bentonite-sand for construction of shaft seals and liners for waste containment structures has been proposed by various studies. Therefore / it is aimed in this study to develop an isolation material to be used in underground waste repositories. For such designs to be effective, their performance need to be assessed and a minimum hydraulic conductivity requirement defined by regulatory agencies should be satisfied (i.e. 1x10-8 m/s in Turkey, 1x10-9 m/s in USA). Therefore / this study assesses the performance of compacted bentonite/sand mixtures in terms of hydrological and mechanical properties. To be able to assess the performance of this material, a variety of laboratory tests were carried out. Engineering geological tests such as compaction, falling head permeability, swelling, unconfined compression and shear strength tests were conducted to select an optimum mixture. Finally, an optimum bentonite-sand mixture possessing 30% bentonite was recommended for the isolation of underground waste disposal facilities.
64

Influence of Permeation of Synthetic Groundwater Solutions on the Hydro-Mechanical Proerties of Barmer Bentonite

Shashidhar, S January 2013 (has links) (PDF)
The deep geological repository concept is based on “engineered barriers systems (EBS)” that are constructed in the repository and “natural barriers” provided by the surrounding geological environment. The EBS comprises of variety of sub-systems or components, such as the waste form, canister, buffer, backfill, seals, and plugs. Geological disposal is based on the concept of multiple barriers that work together to provide containment. The buffer is made up of densely compacted bentonite or bentonite-sand mix. Bentonite has both mechanical and physico-chemical functions, to fulfill as a barrier material in DGR. The bentonite buffer should hold the containers in place and prevent collapse of the excavation. A plastic deformability of the bentonite is desired to redistribute the stresses that can result from creep in the rock, and prevent transfer of excessive stresses to the canisters. The bentonite buffer must create an impermeable zone around the containers to ensure that the radionuclide released from the vitrified waste is limited by diffusive transport rather than advective transport in groundwater. Another important property of the highly compacted bentonite is its swelling potential. Its swelling potential should be as high as possible, to guarantee the sealing of any cracks occurring in the buffer material or in the storage gallery and thus ensure good imperviousness. Besides its mechanical function, bentonite buffer must sorb escaping radionuclides and thus retard their migration to the geo-environment. The bentonite buffer must retain its mechanical and physico-chemical functions over a span of several hundred thousand years to fulfill its role as a containment barrier in DGR. The bentonite buffer should maintain its physico-chemical and hydro-mechanical integrity on exposure to groundwater. Nuclear power agencies of several countries have identified suitable bentonites for use as buffer in DGR through laboratory experiments and large scale underground testing facilities. Japan has identified Kunigel VI bentonite, South Korea-Kyungju bentonite, China-GMZ bentonite, Belgium-FoCa clay, Sweden-MX-80 bentonite, Spain-FEBEX bentonite and Canada-Avonseal bentonite as candidate bentonite buffer for deep geological repository program. Bentonite from Barmer (Rajasthan State) was identified as suitable buffer for use in Indian deep geological repositories. The influence of moisture and dissolved salt migration on the physico-chemical and hydro-mechanical properties of Barmer bentonite has not been examined. The study is important to understand the clay’s behaviour under deep geological repository conditions, where, the bentonite buffer would come in contact with groundwater. Infiltration of groundwater with variable chemical composition could alter the physico-chemical and hydro-mechanical properties of the clay. The objectives of the thesis are as follows: Examine the influence of permeation of distilled water (DW) and synthetic ground water (SGW) solutions under constant volume condition on suction, physico-chemical and moisture content/dry density characteristics of compacted Barmer bentonite specimens as function of permeation period (maximum permeation period– 30 days). Examine the influence of variation in dry density and gravimetric water content as consequence of DW and SGW solution permeation on swell pressure and unconfined compression strength of Barmer bentonite specimens. Compare experimental swell pressures of re-constituted bentonite specimens with swell pressures predicted by diffuse double layer models. Examine the influence of total dissolved solids (TDS) concentration of permeating solution on the unsaturated permeability of compacted Barmer bentonite specimens. Organization of thesis: After the first introductory chapter, a detailed review of literature is performed in Chapter 2 to review the physicochemical, mineralogical and hydro-mechanical properties of bentonites identified as buffer materials for deep geological repositories of various countries. Based on current understanding and need to perform similar studies with Barmer clay, the chapter develops the scope and objectives of the study. Chapter 3 presents a detailed experimental program of the study. Chapter 4 examines the influence of permeation of distilled water (DW) and synthetic groundwater (SGW) solutions (under constant volume conditions) on the total suction of compacted bentonite specimens at two locations in the clay. The influence of variation in dry density on the moisture migration-suction inter-relations of compacted bentonite specimens is also examined. The associated changes of DW and SGW solution migration under constant volume conditions on the physico-chemical properties, water content and dry density of compacted Barmer bentonite specimens are also examined. The experimental results brought out that matric suction mainly contributed (75 to 92 %) to total suction of the permeated specimens; the permeated specimens experienced reduction in matric suction with increase in gravimetric water content from increase in degree of saturation. Osmotic suction contributed to 10 to 25 % of the total suction of the permeated specimens and was observed to increase with gravimetric water content due to solubilization of salts contained in the voids of the compacted bentonite specimens. The total suction of compacted Barmer bentonite specimen was responsive to the total dissolved solids concentration of the permeating solutions as the specimen permeated with more saline solution (higher TDS value) exhibited lesser total suction. Upon permeation with DW and SGW solutions, the CEC of bentonite was unaltered, while, pH and TDS values were affected. Softening of the bentonite clay occurred from increase in water content and existence of compression zones (material used to seal 1mm gap in relative humidity probe aperture) that in turn facilitated dissipation of swelling stress leading to reduction in dry density values. Chapter 5 examines influence of reduction in dry density and increase in water content on the swell pressure and compression strength characteristics of compacted Barmer bentonite specimens upon DW and SGW solution migration as the results could provide insight into possible deviations from the design properties upon wetting of bentonite buffer by groundwater under deep geological repository conditions. The experimental swelling pressures are also compared with those predicted by Gouy-Chapman diffuse double layer theory. The dry density of 1.6 Mg/m specimens permeated with DW and SGW solutions reduced to 1.59 to 1.36 Mg/m and water contents increased to 18.9 to 27 % on permeation with distilled water and SGW solutions for 30 days. The reductions in dry density and increase in water content caused 30 to 70 % reductions in swell pressures and 31 to 74 % decrease in unconfined compression strength values. Specimens initially compacted to dry density of 1.8 Mg/m, experienced reduction in dry density ranging from 1.79 to 1.52 Mg/m and increase in water content from 18.6 to 24.2 % on permeation of DW and SGW solutions for 30 days. These reductions in dry density and increase in water caused the swell pressures to reduce from 4 to 55 % and unconfined compressive strengths to reduce by 31 to 67 %. Comparison of swell pressures gave -8 to 127 % variations between theoretical (from DDL theory) and experimental values due to errors associated with estimation of surface area and dissolved salt concentrations in pore water. Chapter 6 examines the influence of salinity of permeating solution on the unsaturated permeability of compacted Barmer bentonite specimens. The salinity of permeants was varied by permeating distilled water (DW) and synthetic ground water solutions under constant volume conditions over maximum period of 30 days. Experimental results showed that the saturated permeability coefficients (ksat) of specimens compacted to 1.6 Mg/m, responded to variations in TDS of the permeant. Comparatively, the ksat values of specimens compacted to 1.8 Mg/mwere unaffected by variation in TDS of the permeant. Permeation of DW and SGW solutions decreased the ksat values with time from cation hydration and growth of diffuse ion layers for both, 1.6 and 1.8 Mg/mseries specimens. Increase in gravimetric water content from DW and SGW permeation increased the kunsat values of 1.6 Mg/m specimens from reduction in total suction. Re-orientation of soil structure mobilized larger kunsat values for specimens permeated with SGW solutions than DW at similar total suction. Permeation of DW and SGW solutions had lesser impact on kunsat values of the 1.8 Mg/m specimens in comparison to the 1.6 Mg/m series specimens. Further at both densities, the influence of permeation was more evident at location closer to hydration surface. Chapter 7 summarizes the main findings of this study.
65

Estudo das propriedades mecânicas, reológicas e térmicas de nanocompósito de HMSPP (polipropileno com alta resistência do fundido) com uma bentonita Brasileira / Study of mechanical, rheological and thermal properties of nanocomposite HMSPP (high melt strength polypropylene) with a brazilian bentonite

Fermino, Danilo Marin 22 June 2011 (has links)
Este trabalho aborda o estudo do comportamento mecânico, térmico e reológico do nanocompósito de HMSPP polipropileno de alta resistência do fundido (obtido por radiação gama na dose de 12,5 kGy) e uma argila brasileira bentonítica do Estado da Paraíba (PB), conhecida como chocolate com concentração de 5 e 10 % em massa em comparação a uma argila americana, Cloisite 20A. Foi utilizado nesse nanocompósito o agente compatibilizante polipropileno graftizado com anidrido maleico PP-g-AM com 3 % de concentração em massa, através da técnica de intercalação do fundido utilizando uma extrusora de dupla-rosca e, em seguida, os corpos de prova foram confeccionados em uma injetora. O comportamento mecânico foi avaliado pelos ensaios de tração, flexão e impacto. O comportamento térmico foi avaliado pelas técnicas de calorimetria exploratória diferencial (DSC) e termogravimetria (TGA). O comportamento reológico foi avaliado em um reômetro de placas paralelas. A morfologia dos nanocompósitos foi estudada pela técnica de microscopia eletrônica de varredura (MEV). As bentonitas organofílicas e os nanocompósitos foram caracterizados por difração de raios X (DRX) e infravermelho (FTIR). Nos ensaios mecânicos houve um aumento de 9 % na resistência à tração e no módulo de Young, para os nanocompósitos de HMSPPC com argila Cloisite 20A. No ensaio de impacto izod, o nanocompósito HMSPPB 10 % com argila chocolate obteve um aumento de 50 % na resistência ao impacto. / This work concerns to the study of the mechanical, thermal and rheological behavior of the nanocomposite HMSPP - high melt strength polypropylene (obtained at a dose of 12.5 kGy) and a Brazilian bentonite clay from State of Paraiba (PB), known as \"Chocolate\" in concentrations of 5 and 10 % by weight in comparison with one American clay, Cloisite 20A. The compatibilizer agent based on maleic anhydride grafted polypropylene, known as PP-g-MA, was added at 3 % weight concentration through the melt intercalation technique using a twin-screw extruder, and afterwards, the specimens were prepared by injection process. The mechanical behavior was evaluated by strength, flexural strength and impact tests. The thermal behavior was evaluated by the differential scanning calorimetry (DSC) and thermogravimetry (TGA). The rheological behavior was evaluated in parallel-plate rheometer. The morphology of the nanocomposites was studied by the technique of scanning electron microscopy (SEM). The organophilic bentonite and the nanocomposites were characterized by X-ray diffraction (XRD) and infrared (FTIR). Results of mechanical tests showed a 9 % increase in the tensile strength and Young\'s modulus for the nanocomposites HMSPPC, with Cloisite 20A clay. The nanocomposite HMSPPB 10 %, with \"chocolate\" clay obtained a 50 % increase in the impact strength in the izod impact test.
66

Hydrogen Bonding Between the Carbonyl Group and Wyoming Bentonite

Kohl, Robert A. 01 May 1960 (has links)
The vibrational frequencies of atom to atom bonds within a molecule are a function of the bond energies. Each bond has its characteristic frequency, and most of these frequencies can be detected with the infrared spectrophotometer. When one compound reacts with another or is adsorbed on the surface of a solid, detectable frequency changes or shifts may occur. These changes or shifts yield valuable information about the bonds which are formed or broken.
67

A Theoretical and Practical Analysis of the Effect of Drilling Fluid on Rebar Bond Strength

Costello, Kelly 08 November 2018 (has links)
Drilled shafts are large cylindrical cast-in-place concrete structural elements that can be favored due to cost-effectiveness. These elements however, require strict quality control during construction to ensure a stable excavation. Drilling fluid is often used in construction to attain this stability. Drilling fluid, or slurry, can be ground water or salt water, but is typically made from a mixture of water and mineral or polymer powder to form a viscous fluid slightly more dense than ground water. During concreting, the drilling fluid is displaced by the heavier concrete, which is tremie placed at the base of the excavation from the center of the reinforcement cage. While concrete used for drilled shafts should be highly fluid, it does not follow an ideal, uniform flow. The concrete rather builds up inside the reinforcement cage to a sufficient height before then pressing out radially into the annular cover region. This concrete flow pattern associated with drilled shafts has been shown to trap slurry around/near the steel reinforcement and affect reinforcement bond strength. Presently there are no specifications relating to slurry effects on reinforcing bar bond strength from the American Concrete Institute (ACI) or the American Association of State and Highway Transportation Officials (AASHTO). This dissertation analyzes longitudinal reinforcing bar concrete bond strength data recorded from 268 specimens constructed with tremie-placed concreting conditions in varying drilling fluids. Reinforcement used for testing were No. 8 deformed rebar. Based on the results found from this analysis, this dissertation recommends the use of a slurry modification factor to current bond strength and development length specifications.
68

Relation entre propriétés rhéologiques et structure microscopique de dispersions de particules d'argile dans des dispersions de polymères

Ben Azouz, Kaouther 09 November 2010 (has links) (PDF)
L'argile est utilisée avec des polymères en solution dans de nombreuses applications telles que les boues de forage ou encore pour rendre les fibres textiles résistantes au feu. Du fait de la structure très particulière des particules d'argile, avec plusieurs échelles d'association de feuillets, les propriétés rhéologiques de dispersions d'argile dans des solutions de polymère dépendent fortement de l'histoire mécanique du matériau. Une étude de vieillissement des dispersions d'argile dans les solutions aqueuses de CMC a montré l'effet du temps, en particulier sur l'existence d'un seuil de contrainte et son évolution. Les mesures rhéologiques mettent en évidence des comportements de type " gel ". Ils résultent de la formation, au sein du fluide, de réseaux élastiques de nature différente selon la phase continue utilisée. Dans l'eau, les particules partiellement exfoliées s'associent entre elles selon des mécanismes qui dépendent du pH. Alors que dans la solution de polymère, il semble que des agrégats de particules soient connectés entre eux par l'intermédiaire des chaînes macromoléculaires. L'influence de la température et du pH sur les propriétés rhéologiques a été examinée. Plusieurs expériences indépendantes ont montré une évolution non monotone des caractéristiques mécaniques des fluides lorsque la température augmente. Ceci peut s'expliquer en invoquant un accroissement de la mobilité des chaînes favorisant l'ouverture des agrégats se dissociant en agrégats de plus petite taille. Le contrôle du pH quant à lui permet de modifier les interactions particule-particule et particule-polymère et, de ce fait, d'agir sur les propriétés mécaniques des gels formés.
69

Experimental Assessment of Water Based Drilling Fluids in High Pressure and High Temperature Conditions

Ravi, Ashwin 2011 August 1900 (has links)
Proper selection of drilling fluids plays a major role in determining the efficient completion of any drilling operation. With the increasing number of ultra-deep offshore wells being drilled and ever stringent environmental and safety regulations coming into effect, it becomes necessary to examine and understand the behavior of water based drilling fluids - which are cheaper and less polluting than their oil based counterpart - under extreme temperature and pressure conditions. In most of the existing literature, the testing procedure is simple - increase the temperature of the fluid in steps and record rheological properties at each step. A major drawback of this testing procedure is that it does not represent the continuous temperature change that occurs in a drilling fluid as it is circulated through the well bore. To have a better understanding of fluid behavior under such temperature variation, a continuous test procedure was devised in which the temperature of the drilling fluid was continuously increased to a pre-determined maximum value while monitoring one rheological parameter. The results of such tests may then be used to plan fluid treatment schedules. The experiments were conducted on a Chandler 7600 XHPHT viscometer and they seem to indicate specific temperature ranges above which the properties of the drilling fluid deteriorate. Different fluid compositions and drilling fluids in use in the field were tested and the results are discussed in detail.
70

Clay Mineralogy And Diagenesis Of K-bentonites Occurring In The Devonian Yilanli Formation From North Western Anatolia (bartin-zonguldak)

Unluce, Ozge 01 February 2013 (has links) (PDF)
CLAY MINERALOGY AND DIAGENESIS OF K-BENTONITES OCCURRING IN THE DEVONIAN YILANLI FORMATION FROM NORTH WESTERN ANATOLIA (BARTIN-ZONGULDAK) &Uuml / nl&uuml / ce, &Ouml / zge M. Sc., Department of Geological Engineering Supervisor: Prof. Dr. Asuman G&uuml / nal T&uuml / rkmenoglu January 2013, 80 pages Yellowish brown and gray-green colored K-bentonite horizons revealing thicknesses up to 60 cm are exposed within the limestone-dolomitic limestone successions (Middle Devonian-Lower Carboniferous Yilanli formation) deposited on a shallow marine carbonate platform at Zonguldak and Bartin area in the western Black Sea region. In this study, bentonite samples collected from two different locations / Gavurpinari quarry and Yilanli Burnu quarry are investigated by means of optical microscopy, X-ray powder diffraction analyses (XRD), both scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis, high resolution transmission electron microscopy (HR-TEM) and inductively coupled plasma mass spectrometry (ICP-MS) in order to reveal their mineralogicalgeochemical characteristics and understand their origin and evolution. Illite is determined as the major phyllosilicate mineral in K-bentonites. Additionally, kaolinite and illite-smectite mixed-layer clay minerals are also detected in some samples. As non-clay minerals calcite, dolomite, quartz, gypsum, feldspar, pyrite and zircon are present in these K-bentonites. Crystal-chemical characteristics (K&uuml / bler index-KI, intensity ratios (Ir), illite polytypes (%2M1), (d060) of illite minerals from the two different sampling locations were investigated. Their KI values (for Yilanli Burnu sampling location varying between 0.47-0.93 (with an average of 0.71 &Delta / &deg / 2&theta / ) / for Gavurpinari quarry sampling location varying between 0.69-0.77 (with an average of 0.72 &Delta / &deg / 2&theta / )) / % of swelling component (smectite-max 5%) and crystallite thickness (N=10-20 nm) indicate that these illites were affected by high-grade diagenetic conditions. Similarly, illite polytype ratios (%2M1/(2M1+1Md)) range between 20-50% (with an average of 36%) for the Yilanli Burnu quarry samples, whereas, these ratios are between 25-45% (with an average of 37%) for the Gavurpinari limestone quarry samples. Illite polytpe data also supports a high-grade diagenetic origin possibility of K-bentonites. Illite d060 values ranges between 1.491-1.503 &Aring / , (with an average of 1.499 &Aring / ) which reflect the octahedral Mg+Fe compositions are varying between 0.27-0.51 and thus approach the ideal muscovite-phengite values close to dioctahedral muscovite composition. Based on the data obtained from this study, volcanic ash was firstly transformed into a smectitic I/S mineral in early stages of sedimentation and burial diagenesis. This initial smectite was then be transformed into a highly illitic I/S, and finally illite by diffusion of elements into and out of the bed, during Devonian. Mineralogical-petrographical data points out that these K-bentonites evolved in a high-grade diagenetic environment (approximately 100-150 &deg / C) from the products of volcanic eruptions having yet unknown source and distance during Middle-Late Devonian time.

Page generated in 0.0603 seconds