• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 25
  • 10
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 81
  • 44
  • 11
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The inheritance of cold tolerance in a seeded bermudagrass (Cynodon dactylon L. Pers) population

Stefaniak, Thomas Richard, January 2008 (has links)
Thesis (Ph. D.)--University of Kentucky, 2008. / Title from document title page (viewed on May 13, 2008). Document formatted into pages; contains: vi, 82 p. : ill. Includes abstract and vita. Includes bibliographical references (p. 76-81).
42

Aerification tine effects on Tifway bermudagrass athletic fields

Rainey, Wyman Garlon, Guertal, Elizabeth A., January 2009 (has links)
Thesis--Auburn University, 2009. / Abstract. Vita. Includes bibliographical references (p. 39-48).
43

Composição de substrato na qualidade de campo esportivo de grama bermuda / Evaluation of root zone for bermuda grass athletic fields

Oliveira, Mauricio Roberto de [UNESP] 01 June 2016 (has links)
Submitted by MAURICIO ROBERTO DE OLIVEIRA null (oliveira_mr@yahoo.com.br) on 2017-01-03T00:43:39Z No. of bitstreams: 1 TESE MAURICIO 01062016.pdf: 3073061 bytes, checksum: 148db68a1547f53f910ee3d30febb577 (MD5) / Rejected by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br), reason: Solicitamos que realize uma nova submissão seguindo as orientações abaixo: No campo “Versão a ser disponibilizada online imediatamente” foi informado que seria disponibilizado o texto completo porém no campo “Data para a disponibilização do texto completo” foi informado que o texto completo deverá ser disponibilizado apenas 24 meses após a defesa. Caso opte pela disponibilização do texto completo apenas 24 meses após a defesa selecione no campo “Versão a ser disponibilizada online imediatamente” a opção “Texto parcial”. Esta opção é utilizada caso você tenha planos de publicar seu trabalho em periódicos científicos ou em formato de livro, por exemplo e fará com que apenas as páginas pré-textuais, introdução, considerações e referências sejam disponibilizadas. Se optar por disponibilizar o texto completo de seu trabalho imediatamente selecione no campo “Data para a disponibilização do texto completo” a opção “Não se aplica (texto completo)”. Isso fará com que seu trabalho seja disponibilizado na íntegra no Repositório Institucional UNESP. Por favor, corrija esta informação realizando uma nova submissão. Agradecemos a compreensão. on 2017-01-05T16:53:56Z (GMT) / Submitted by MAURICIO ROBERTO DE OLIVEIRA null (oliveira_mr@yahoo.com.br) on 2017-01-05T17:10:41Z No. of bitstreams: 1 TESE MAURICIO 01062016.pdf: 3073061 bytes, checksum: 148db68a1547f53f910ee3d30febb577 (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2017-01-10T18:18:02Z (GMT) No. of bitstreams: 1 oliveira_mr_dr_bot.pdf: 3073061 bytes, checksum: 148db68a1547f53f910ee3d30febb577 (MD5) / Made available in DSpace on 2017-01-10T18:18:02Z (GMT). No. of bitstreams: 1 oliveira_mr_dr_bot.pdf: 3073061 bytes, checksum: 148db68a1547f53f910ee3d30febb577 (MD5) Previous issue date: 2016-06-01 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Para que um campo esportivo seja adequado ele precisa ter características desejáveis de qualidade do gramado, permitir o desempenho do atleta, drenagem de água e durabilidade. Dentre as três camadas que formam o campo atlético (sub-base, base e grama), a base é a responsável pelo desenvolvimento radicular da grama e tem influência direta sob os quatro fatores descritos acima. A construção da base dos campos esportivos tem sido baseada nas recomendações da USGA (United States Golf Association) para “greens” de campos de golfe, tendo como principal componente a areia, devido sua alta capacidade de drenagem. Porém, as características desejáveis podem ser variáveis de acordo com a sub base utilizada, que pode alterar propriedades químicas e físicas do solo refletindo na qualidade, desempenho e durabilidade do gramado. O objetivo deste trabalho foi definir a melhor composição da base para os campos esportivos de grama bermuda e gerar informações técnicas que contribuam na construção dos campos de futebol brasileiros. Foram avaliados os seguintes tratamentos: T1: Areia; T2: Areia (80%) + Turfa (20%); T3: Areia (90%) + Solo argiloso (10%); T4: Areia (70%) + Solo arenoso (30%). O delineamento experimental utilizado foi em blocos casualizados, composto por 4 tratamentos e 3 repetições, tendo cada parcela a dimensão de 3 x 4 m. Durante um ano foram realizadas as seguintes avaliações: tração superficial dos gramados, velocidade de infiltração de água na base, resistência mecânica da base à penetração, umidade da base, concentração de nutrientes na lâmina foliar da grama bermuda e análise química da base. Conclui-se que o uso exclusivo de areia na composição da base não diferiu em relação as misturas de areia com turfa e solo para os parâmetros: resistência mecânica da base à penetração, tração superficial dos gramados, pH, matéria orgânica, fósforo e magnésio. Assim, a mistura da areia com a turfa diminuiu a velocidade de infiltração de água na base e aumentou a umidade da base.
44

Niche Tourism within Small Island Tourism Economies: An Analysis of SCUBA Tourists In Bermuda.

January 2012 (has links)
abstract: Developing new markets in tourism is vital for the prosperity of Small Island Tourism Economies like Bermuda (McElroy). Countries must continuously improve and reinvent themselves in order to maintain growth. SCUBA diving in Bermuda is a market that could be improved. Most SCUBA divers are of higher than average household income and can make an attractive tourist base. This thesis analyzes SCUBA tourists in Bermuda to ascertain their characteristics, economics impacts, and participation in island activities in order to help guide future endeavors involving SCUBA tourism in Bermuda and provide an outline of how to analyze other Niche markets. Comparisons are made between SCUBA and Non-SCUBA tourists (those who participated in Scuba against those that did not). The results show that spending, activities/events participated, and SCUBA tourists characteristics are not all significantly different from one another at the 5% level. Meaning that some variables were significant and some weren't , with in their respective groups. Within Trip Expenditures it was shown that, of the 9 variables tested, 3 were significant. In Activities, 8 of the 11 tested were significant, attractions there were 8 of the 18 variables that were significant and in Evening Entertainment, there was 2 out the 6 variables being significant at the 5% level. / Dissertation/Thesis / M.S. Recreation and Tourism Studies 2012
45

Evaluation of Fungcoal as a bioprocess technology for self-cladding of waste coal dumps

Sekhohola, Lerato M January 2016 (has links)
Low-grade coal, a poor source of energy, has long been regarded as waste material by the coal mining industry. Biological degradation of this coal material by ligninolytic fungal strains presents a viable strategy towards eliminating this unusable fossil fuel. To this end, a novel and patented bioprocess termed Fungcoal was developed. Fungcoal is a biological process utilised in the in situ treatment of waste coal and is based on the mutualistic relationship between the fungus Neosartorya fischeri and the graminaceous species Cynodon dactylon. The process facilitates the rapid conversion of waste coal into soil-like material that stimulates establishment of vegetation for eventual coal dump rehabilitation. While a number of in vitro studies have identified various fungal strains as efficient coal degraders, the mechanisms involved in the Fungcoal-stimulated degradation process have not been fully elucidated. Furthermore, implementation of Fungcoal at both pilot and commercial scale has not been achieved. Thus the objective of this work was to investigate Fungcoal as a bioprocess via examining the role of coal degrading fungi (CDF) and grasses as biocatalysts in coal biodegradation and for the self-cladding of waste coal dumps. Initially, waste coal degradation by N. fischeri, strain ECCN 84, was investigated, specifically focusing on the mechanisms underpinning the process. In vitro studies showed the addition of waste coal induced active fungal colonisation resulting in increased fungal biomass. Increased extracellular laccase (LAC) activity, occuring concomitantly with an increase in hyphal peroxisome proliferation, was also observed in the coal supplied fungal cultures. Analysis of the colonised waste coal revealed a time dependent reduction in the percentage weight of elemental carbon coupled with an increase in elemental oxygen. The results supported metabolism and degradation of waste coal by N. fischeri strain ECCN 84 and involvement of fungal extracellular laccase. The contribution of C. dactylon, a C4 grass species to in situ biodegradation of waste coal in the presence of coal degrading and mycorrhizal fungi (MF) was also investigated. Enhanced degradation of the waste coal into a humic soil-like material was observed within the rhizosphere. Analysis of the resultant substrate revealed an increased concentration of highly oxidised humic-like substances (HS). Fungi remained viable in the rhizosphere up to 47 weeks post-inoculation and cultivation of C. dactylon, indicating the resultant humic substance-rich rhizosphere provided an environment conducive for microbial proliferation and activity. Furthermore, humic substance enrichment of waste coal substrates supported germination and seedling emergence of several agronomic species including Zea mays (corn), Phaseolus vulgaris (bean), Pisum sativum (pea), and Spinacia oleracea (spinach). Use of various cladding materials to support coal biodegradation, by fungus-grass mutualism and rehabilitation of waste dumps was evaluated at commercial scale. While substantial physico-chemical changes were not evident in the absence of cladding or where waste coal was used as cladding material, successful establishment of grass cover and diversity was achieved within three hydrological cycles on dumps cladded with weathered coal. Work presented in this thesis successfully demonstrates the degradation of waste coal by N. fischeri. The biodegradation process included enhanced extracellular LAC activity coupled with increased 3 waste coal oxidation. Increased HS concentration of waste coal substrate supported germination and early seedling establishment of several agronomic species. At commercial scale a co-substrate in the form of carbon-rich weathered coal was essential to support fungus-grass mutualism and Fungcoal-induced rehabilitation. These findings support the developed Fungcoal concept and the underpinning rationale that the phyto-biodegradation of waste coal indeed depends on the mutualistic interactions between grass root exudates and the ligninolytic and mycorrhizal fungi. Taken together, these findings provide practical evidence of the contribution of fungi and grasses as mutualists in the biodegradation of waste coal and sustainable rehabilitation of waste coal dumps
46

The rhizosphere as a bioprocess environment for the bioconversion of hard coal

Igbinigie, Eric Egbe January 2008 (has links)
Fundamental processes involved in the microbial degradation of coal and its derivatives have been well investigated and documented over the past two decades. However, limited progress in industrial application has been identified as bottleneck in further active development of the field. The sporadic and unanticipated growth of Cynodon dactylon (Bermuda grass) has been observed on the surface of some coal dumps in the Witbank coal mining area of South Africa. Preliminary investigations showed the formation of a humic soil-like material from the breakdown of hard coal in the root zone of these plants. The potential of this system to contribute to industrial scale bioprocessing of hard coal was investigated. This study involved an investigation of the C. dactylon/coal rhizosphere environment and demonstrated the presence of fungal species with known coal bioconversion capability. Amongst these Neosartorya fischeri was identified and its activity in coal bioconversion was described for the first time. Cynodon dactylon plant roots were also shown to be colonized by mycorrhizal fungi including Glomus, Paraglomus and Gigaspora species. The role of plant photosynthate translocation into the root zone, providing organic carbon supplementation of fungal coal bioconversion was investigated in deep liquid culture with the N. fischeri isolate used as the biocatalyst. Organic acids, sugars and complex organic carbon sources were investigated and it was shown that glutamate provided significant enhancement of bioconversion activity in this system. The performance of N. fischeri in coal bioconversion was compared with Phanaerochaete chrysosporium and Trametes versicolor, both previously described fungal species in the coal bioconversion application. Fourier transform infrared spectroscopy indicated more pronounced oxidation and introduction of nitro groups in the matrix of the humic acid product of coal bioconversion in N. fischeri and P. chrysosporium than for T. versicolor. Macro-elemental analysis of biomass-bound humic acid obtained from the N. fischeri catalyzed reaction showed an increase in the oxygen and nitrogen components and coupled with a reduction in carbon and hydrogen. Pyrolysis gas chromatography mass spectroscopy further supported the proposal that the mechanism of bioconversion involves oxygen and nitrogen insertion into the coal structure. The C. dactylon bituminous hard coal dump environment was simulated in a fixed-bed perfusion column bioreactor in which the contribution of organic supplement by the plant/mycorrhizal component of the system was investigated. The results enabled the proposal of a descriptive model accounting for the performance of the system in which the plant/mycorrhizal component introduces organic substances into the root zone. The non-mycorrhizal fungi utilize the organic carbon supplement in its attack on the coal substrate, breaking it down, and releasing plant nutrients and a soil-like substrate which in turn enables the growth of C. dactylon in this hostile environment. Based on these results, the Stacked Heap Coal Bioreactor concept was developed as a large-scale industrial bioprocess application based on heap-leach mineral processing technology. Field studies have confirmed that bituminous hard coal can be converted to a humic acid rich substrate in a stacked heap system inoculated with mycorrhizal and N. fischeri cultures and planted with C. dactylon.
47

Fertirrigação ou fertilizantes de liberação gradual no manejo de gramados esportivos /

Kamimura, Luciana Maira Tibães January 2019 (has links)
Orientador: Roberto Lyra Villas Bôas / Resumo: O gramado esportivo requer cuidados cautelosos para apresentar bom desenvolvimento e “jogabilidade”. O tipo de fertilizante e a forma de aplicação deste interferem diretamente em sua qualidade, para isso, é necessário obter informações sobre o método mais adequado da adubação. O objetivo com o presente trabalho foi de comparar fertilizantes de liberação gradual, e fetirrigação, com a adubação convencional à fim de obter maior qualidade de grama Zeon e Celebration. O experimento foi conduzido na área experimental da Faculdade de Ciências Agronômicas – FCA/UNESP, Campus de Botucatu (SP). O delineamento foi em blocos ao acaso, em parcelas subdivididas, com grama Zeon e Celebration, como parcela principal, e cinco manejos de adubação (1. sem adubação; 2. fertirrigação; 3. adubação com fertilizantes convencionais; 4. adubação com fertilizante de liberação lenta; 5. adubação com fertilizante de liberação controlada), nas subparcelas, e quatro repetições, no período de janeiro a junho, sendo realizadas as avaliaçoes a cada quinze dias. As características avaliadas foram a Taxa de Cobertura Verde (TCV), Índice de Coloração Verde Escuro (ICVE), Índice de Grama, Índice de Clorofila, altura, Fitomassa de Matéria Seca (MS), matéria seca do estolão e rizoma e da raíz, comprimento da raíz,química do solo, solução do solo, e o teor e exportação de nutrientes do gramado. Os diferentes manejos de adubação apresentaram comportamento distintos entre si e entre as cultivares de grama. A grama Ze... (Resumo completo, clicar acesso eletrônico abaixo) / Mestre
48

The formulation of an economical chemical herbicide to kill Johnson and Bermuda grass

Taylor, Jack P. January 1949 (has links)
no abstract provided by author / Master of Science
49

Some physiological responses of two grasses as influenced by temperature, light, and nitrogen fertilization

Schmidt, Richard E. January 1965 (has links)
Two environmental control chamber experiments were conducted to study the effects or temperature, nitrogen, and light intensity on the growth and physiological effects on Tifgreen bermudagrass, Cynodon dactylon (L) Pers., and Cohansey bentgrass, Agrostis palustris Huds. Each of the grasses was included in a field experiment to study the influence of nitrogen rates on carbohydrate reserves at different seasons. Increased temperatures with bentgrass caused decreased carbohydrates, root weights, and final growth of tops, but increased nitrogen content and respiration. NAR in bentgrass was highest at 75 F. The respiration rate, top growth, and carbohydrate content of bermudagrass tended to increase with temperature, but root weights and NAR were highest at medium temperatures. High N generally increased top growth, NAR, respiration, and nitrogen content, but lowered the carbohydrates and root growth for both grasses. Bentgrass, grown at 95 F during the day-, declined in yield, root growth, NAR, and respiration as night temperatures increased from 60 to 90 F. With bermudagrass HAR, top growth, and root growth were highest at 75 F and lowest at 90 F night temperatures. The AEC of bentgrass were highest at the mid-temperature, but the AEC: fer bermudagrass tended to increase with the high night temperature. Low light intensity generally decreased the yield of tops and roots, NAR, respiration, and carbohydrates, but increased the nitrogen content of both grasses. Bentgrass stolons increased in carbohydrate content during the tall and early vinter, and then declined rapidly during the spring. During the summer, the carbohydrates in bentgrass were low. The carbohydrates in bermudagrass stolons decreased during the winter and spring, increased during summer, and reached a maximum by late fall. For all experiments the oligosaccharides and monosaccharides made up a rather large portion of the AEC in bentgrass, polysaccharides being the largest fraction. Polysaccharides in bermudagrass made up the largest fraction of the AEC, the monosaccharides and oligosaccharides being less than 10% of the dry weight. / Ph. D.
50

Potential use of sludge in slope bioengineering: environmental considerations.

January 2007 (has links)
Lam, Shu Kee. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (leaves 206-219). / Abstracts in English and Chinese. / Abstract --- p.i / Abstract (in Chinese) --- p.iv / Acknowledgements --- p.vi / Table of contents --- p.vii / List of tables --- p.xii / List of figures --- p.xvi / List of plates --- p.xvii / Chapter CHAPTER 1 --- INTRODUCTION / Chapter 1.1 --- Research background --- p.1 / Chapter 1.2 --- Conceptual framework --- p.4 / Chapter 1.3 --- Objectives of the study --- p.8 / Chapter 1.4 --- Significance of the study --- p.9 / Chapter 1.5 --- Organization of the thesis --- p.10 / Chapter CHAPTER 2 --- LITERATURE REVIEW / Chapter 2.1 --- Introduction --- p.12 / Chapter 2.2 --- Use of hydroseeding in slope bioengineering works --- p.12 / Chapter 2.3 --- Problems associated with hydroseeded slopes --- p.12 / Chapter 2.4 --- Common Bermudagrass used in hydroseeding --- p.13 / Chapter 2.5 --- "Sludge disposal, potentials and problems" --- p.14 / Chapter 2.5.1 --- Properties and disposal of sludge --- p.14 / Chapter 2.5.2 --- Use of sludge and potential problems --- p.16 / Chapter 2.5.3 --- Heavy metals in sludge --- p.19 / Chapter 2.5.3.1 --- Cadmium --- p.22 / Chapter 2.5.3.2 --- Chromium --- p.22 / Chapter 2.5.3.3 --- Copper --- p.23 / Chapter 2.5.3.4 --- Nickel --- p.24 / Chapter 2.5.3.5 --- Lead --- p.24 / Chapter 2.5.3.6 --- Zinc --- p.25 / Chapter 2.5.4 --- Speciation of heavy metals --- p.25 / Chapter 2.5.5 --- Factors affecting the bioavailability of heavy metals --- p.26 / Chapter 2.5.5.1 --- Reaction pH --- p.26 / Chapter 2.5.5.2 --- Organic matter --- p.28 / Chapter 2.5.5.3 --- Fertilizers --- p.29 / Chapter 2.5.6 --- Effect of heavy metals on plant growth --- p.29 / Chapter 2.5.7 --- Effect of heavy metals on animals and water bodies --- p.31 / Chapter 2.6 --- "Lime, heavy metals and plant growth" --- p.32 / Chapter 2.6.1 --- Effect of lime on heavy metal dynamics --- p.32 / Chapter 2.6.1.1 --- Competition with heavy metals for adsorption sites --- p.32 / Chapter 2.6.1.2 --- Immobilization of heavy metals --- p.32 / Chapter 2.6.2 --- Effect of lime on plant growth --- p.34 / Chapter 2.7 --- Effect of precipitation on slopes --- p.35 / Chapter 2.7.1 --- Infiltration --- p.35 / Chapter 2.7.2 --- Surface runoff --- p.38 / Chapter 2.7.3 --- Soil erosion --- p.39 / Chapter 2.8 --- Summary --- p.42 / Chapter CHAPTER 3 --- EFFECT OF SLUDGE AND LIME ON ABOVEGROUND BIOMASS OF COMMON BERMUDAGRASS / Chapter 3.1 --- Introduction --- p.43 / Chapter 3.2 --- Materials and methods --- p.44 / Chapter 3.2.1 --- Materials --- p.45 / Chapter 3.2.2 --- Experimental design --- p.46 / Chapter 3.2.3 --- Grass clipping and pre-treatment --- p.49 / Chapter 3.3 --- Chemical analysis --- p.50 / Chapter 3.3.1 --- Properties of decomposed granite --- p.50 / Chapter 3.3.2 --- "Properties of sludge," --- p.52 / Chapter 3.3.3 --- Nitrogen of grass clippings --- p.52 / Chapter 3.4 --- Statistical analysis --- p.53 / Chapter 3.5 --- Results and discussion --- p.54 / Chapter 3.5.1 --- Properties of DG and sludge --- p.54 / Chapter 3.5.2 --- Aboveground biomass of grass --- p.56 / Chapter 3.5.3 --- Effect of sludge on aboveground biomass --- p.63 / Chapter 3.5.4 --- Effect of lime on aboveground biomass --- p.66 / Chapter 3.5.5 --- Synergic effect of sludge and lime on aboveground biomass --- p.68 / Chapter 3.5.6 --- "Effect of sludge on nitrogen uptake by grass shoots," --- p.69 / Chapter 3.6 --- Summary --- p.72 / Chapter CHAPTER 4 --- EFFECT OF SLUDGE AND LIME ON HEAVY METAL UPTAKE BY COMMON BERMUDAGRASS / Chapter 4.1 --- Introduction --- p.74 / Chapter 4.2 --- Materials and methods --- p.77 / Chapter 4.2.1 --- Materials and experimental design --- p.77 / Chapter 4.2.2 --- Analysis of heavy metals in grass shoots --- p.77 / Chapter 4.2.3 --- Reaction pH at the end of Part 1 --- p.77 / Chapter 4.2.4 --- Statistical analysis --- p.78 / Chapter 4.3 --- Results and discussion --- p.78 / Chapter 4.3.1 --- Cumulative uptake of heavy metals by common Bermudagrass --- p.79 / Chapter 4.3.2 --- Effect of sludge on heavy metal uptake --- p.84 / Chapter 4.3.3 --- Effect of lime on heavy metal uptake --- p.86 / Chapter 4.3.4 --- Synergic effect of sludge and lime on cumulative heavy metal uptake --- p.88 / Chapter 4.3.5 --- Effect of fertilizer addition --- p.91 / Chapter 4.3.6 --- Concentration of heavy metals in grass --- p.93 / Chapter 4.3.7 --- Effect of pH on heavy metal uptake --- p.98 / Chapter 4.3.8 --- Effect of heavy metal uptake on aboveground biomass --- p.100 / Chapter 4.4 --- Summary --- p.103 / Chapter CHAPTER 5 --- EFFECT OF SLUDGE AND LIME ON HEAVY METALS IN LEACHATE / Chapter 5.1 --- Introduction --- p.106 / Chapter 5.2 --- Materials and methods --- p.107 / Chapter 5.2.1 --- Leachate collection --- p.108 / Chapter 5.2.2 --- Analysis of leachate --- p.109 / Chapter 5.2.3 --- Statistical analysis --- p.109 / Chapter 5.3 --- Results and discussion --- p.110 / Chapter 5.3.1 --- Effect of sludge and lime on leachate volume --- p.110 / Chapter 5.3.2 --- Leachate pH and the effect of sludge and lime --- p.115 / Chapter 5.3.3 --- Heavy metal contents in leachate --- p.119 / Chapter 5.3.4 --- Effect of sludge and lime on the leaching of heavy metals --- p.121 / Chapter 5.3.5 --- Effect of pH on the leaching of heavy metals --- p.125 / Chapter 5.4 --- Summary --- p.126 / Chapter CHAPTER 6 --- "LEACHATE, SURFACE RUNOFF, SEDIMENT YIELD AND THEIR HEAVY METALS" / Chapter 6.1 --- Introduction --- p.128 / Chapter 6.2 --- Materials and methods --- p.130 / Chapter 6.2.1 --- Materials --- p.130 / Chapter 6.2.2 --- Experimental design --- p.132 / Chapter 6.2.3 --- Rainfall intensities in simulation experiment --- p.134 / Chapter 6.2.4 --- Selection of slope gradient --- p.136 / Chapter 6.2.5 --- Rainfall simulation --- p.136 / Chapter 6.2.6 --- "Leachate, surface runoff and runoff sediment" --- p.137 / Chapter 6.2.7 --- Properties of decomposed granite and sludge --- p.138 / Chapter 6.2.8 --- "Heavy metals in leachate, surface runoff and runoff sediment" --- p.139 / Chapter 6.2.9 --- Statistical analysis --- p.140 / Chapter 6.3 --- Results and discussion --- p.140 / Chapter 6.3.1 --- Properties of DG and sludge --- p.140 / Chapter 6.3.2 --- "Leachate, surface runoff and runoff sediment production" --- p.142 / Chapter 6.3.3 --- "Heavy metal concentrations in leachate, surface runoff and runoff sediment" --- p.153 / Chapter 6.3.3.1 --- Heavy metal concentrations in leachate --- p.153 / Chapter 6.3.3.2 --- Heavy metal concentrations in runoff --- p.163 / Chapter 6.3.4 --- Cumulative loss of heavy metals --- p.170 / Chapter 6.3.4.1 --- Cumulative loss of heavy metals from leachate --- p.170 / Chapter 6.3.4.2 --- Cumulative loss of heavy metals from runoff --- p.178 / Chapter 6.3.4.3 --- "Heavy metal loss from leachate, surface runoff and runoff sediment" --- p.185 / Chapter 6.4 --- Summary --- p.189 / Chapter CHAPTER 7 --- CONCLUSIONS / Chapter 7.1 --- Summary of major findings --- p.192 / Chapter 7.2 --- Implications of the study --- p.196 / Chapter 7.2.1 --- Potential use of sludge in slope bioengineering works --- p.196 / Chapter 7.2.2 --- Measures to optimize the benefits of sludge in land application --- p.198 / Chapter 7.3 --- Limitations of the study --- p.200 / Chapter 7.4 --- Suggestions for further study --- p.202 / REFERENCES --- p.206 / APPENDICES --- p.220

Page generated in 0.0362 seconds