Spelling suggestions: "subject:"matrixmaterial interface"" "subject:"matrismaterial interface""
1 |
Finite element modelling of the mechanics of solid foam materialsRibeiro-Ayeh, Steven January 2005 (has links)
<p>Failure of bi-material interfaces is studied with the aim to quantify the influence of the induced stress concentrations on the strength of the interfaces. A simple point-stress criterion, used in conjunction with finite element calculations, is evaluated to provide strength predictions for bi-material bonded joints and inserts in polymer foam. The influence of local stress concentrations on the initiation of fracture at open and closed wedge bi-material interfaces is investigated. The joint combinations are analysed numerically and the strength predictions obtained from the point-stress criterion are verified in experiments. </p><p>The predictions are made using a simple point-stress criterion in combination with highly accurate finite element calculations. The point-stress criterion was known from earlier work to give accurate predictions of failure at cracks and notches but had to be slightly modified to become applicable for the studied configurations. The criterion showed to be generally applicable to the bi-material interfaces studied herein. Sensible predictions for the tendentious strength behaviour could be made with reasonable accuracy, including the prediction of crossover from local, joint-induced failure to global failure. </p><p>To study the micromechanical properties of a cellular solid with arbitrary topology, various models of a closed-cell foam are created on the basis of random Voronoi tessellations. The foam models are analysed using the finite element method and the effective elastic properties of the model cellular solids are determined. The calculated moduli are compared to the properties of a real reference foam and the numerical results show to be in very good agreement. </p><p>The mechanical properties of closed-cell, low-density cellular solids are governed by the stiffnesses of the cell edges and the cell faces. Models of idealised foam models with planar cell faces, cannot account for the curved faces found on some metal and polymer foams. Finite element models of closed-cell foams were created to analyse the influence of cell face curvature on the stiffness of the foam. By determining the elastic modulus for foams with non-planar cell faces, the effect of cell face curvature could be analysed as a function of the relative density and the distribution of solid material between cell edges and faces. </p><p>Foam models were generated from disturbed point distribution lattices and compared to models obtained from random distributions. The aim was to analyse if and how the geometry of the cells and their spatial arrangement influences the mechanical properties of a foam. The results suggest that the spatial arrangement and the geometry of the cells have significant influence on the properties of a foam. The elastic properties calculated for models from disturbed foam structures underestimated the elastic moduli of the foam, whereas models from random structures provided results which were in very good agreement with a reference foam.</p>
|
2 |
Finite element modelling of the mechanics of solid foam materialsRibeiro-Ayeh, Steven January 2005 (has links)
Failure of bi-material interfaces is studied with the aim to quantify the influence of the induced stress concentrations on the strength of the interfaces. A simple point-stress criterion, used in conjunction with finite element calculations, is evaluated to provide strength predictions for bi-material bonded joints and inserts in polymer foam. The influence of local stress concentrations on the initiation of fracture at open and closed wedge bi-material interfaces is investigated. The joint combinations are analysed numerically and the strength predictions obtained from the point-stress criterion are verified in experiments. The predictions are made using a simple point-stress criterion in combination with highly accurate finite element calculations. The point-stress criterion was known from earlier work to give accurate predictions of failure at cracks and notches but had to be slightly modified to become applicable for the studied configurations. The criterion showed to be generally applicable to the bi-material interfaces studied herein. Sensible predictions for the tendentious strength behaviour could be made with reasonable accuracy, including the prediction of crossover from local, joint-induced failure to global failure. To study the micromechanical properties of a cellular solid with arbitrary topology, various models of a closed-cell foam are created on the basis of random Voronoi tessellations. The foam models are analysed using the finite element method and the effective elastic properties of the model cellular solids are determined. The calculated moduli are compared to the properties of a real reference foam and the numerical results show to be in very good agreement. The mechanical properties of closed-cell, low-density cellular solids are governed by the stiffnesses of the cell edges and the cell faces. Models of idealised foam models with planar cell faces, cannot account for the curved faces found on some metal and polymer foams. Finite element models of closed-cell foams were created to analyse the influence of cell face curvature on the stiffness of the foam. By determining the elastic modulus for foams with non-planar cell faces, the effect of cell face curvature could be analysed as a function of the relative density and the distribution of solid material between cell edges and faces. Foam models were generated from disturbed point distribution lattices and compared to models obtained from random distributions. The aim was to analyse if and how the geometry of the cells and their spatial arrangement influences the mechanical properties of a foam. The results suggest that the spatial arrangement and the geometry of the cells have significant influence on the properties of a foam. The elastic properties calculated for models from disturbed foam structures underestimated the elastic moduli of the foam, whereas models from random structures provided results which were in very good agreement with a reference foam. / QC 20101011
|
3 |
Numerical and experimental analysis of adhesively bonded T-joints : Using a bi-material interface and cohesive zone modellingAndersson Lassila, Andreas, Folcke, Marcus January 2018 (has links)
With increasing climate change the automotive industry is facing increasing demands regarding emissions and environmental impact. To lower emissions and environmental impact the automotive industry strives to increase the efficiency of vehicles by for example reducing the weight. This can be achieved by the implementation of lightweight products made of composite materials where different materials must be joined. A key technology when producing lightweight products is adhesive joining. In an effort to expand the implementations of structural adhesives Volvo Buses wants to increase their knowledge about adhesive joining techniques. This thesis is done in collaboration with Volvo Buses and aims to increase the knowledge about numerical simulations of adhesively bonded joints. A numerical model of an adhesively bonded T-joint is presented where the adhesive layer is modelled using the Cohesive Zone Model. The experimental extraction of cohesive laws for adhesives is discussed and implemented as bi-linear traction-separation laws. Experiments of the T-joint for two different load cases are performed and compared to the results of the numerical simulations. The experimental results shows a similar force-displacement response as for the results of the numerical simulations. Although there were deviations in the maximum applied load and for one load case there were deviations in the behavior after the main load drop. The deviations between numerical and experimental results are believed to be due to inaccurate material properties for the adhesive, the use of insufficient bi-linear cohesive laws, the occurrence of a combination of adhesive and cohesive fractures during the experiments and dissimilar effective bonding surface areas in the numerical model and the physical specimens.
|
4 |
Popis porušování vrstevnatých polymerních prostředí / Description of Failure of the Multilayer Polymer StructureZouhar, Michal January 2014 (has links)
The aim of this thesis is to describe behavior of cracks in layered polymer materials. Quasi-brittle fracture (through the initiation and subsequent crack propagation mechanism) under low stresses is the most common mode of failure of polymer materials. In this case plastic deformations are localized in the vinicity of the crack tip and linear elastic fracture mechanics description of the crack behavior can be used. The knowledge of fracture parameters change during the crack propagation in multilayer body is a key point for establishing of the maximum load and consequently for the assessment of the residua lifetime. In contrast to homogeneous bodies the estimation of stress intensity factors for multilayer (composite) structure is numerically more elaborated and the fracture mechanics approach is complicated by the existence of interfaces between single layers, where material parameters are changed by a step. Special attention is paid to the configuration of a crack growing close to the material interface and along the interface. For the crack with tip on the material interface the effective values of stress intensity factor based on the crack stability criteria are estimated. It is shown that under special conditions (depending mainly on the elastic mismatch of materials) the existence of material interface has positive influence on the lifetime of the multilayered structure.
|
5 |
Studies On The Evaluation Of Thermal Stress Intensity Factors For Bi-Material Interface CracksKhandelwal, Ratnesh 03 1900 (has links)
Components of turbines, combustion chambers, multi-layered electronic packaging structures and nuclear reactors are subjected to transient thermal loads during their service life. In the presence of a discontinuity like crack or dislocation, the thermal load creates high temperature gradient, which in turn causes the stress intensification at the crack tips. If proper attention is not paid in the design and maintenance of components on this high stress in the vicinity of crack tips, it may lead to instability in the system and decrease in the service life. The concepts of thermal fracture mechanics and its major parameter called transient thermal stress intensity factors can greatly help in the assessment of stability and residual life prediction of such structures.
The evaluation of thermal stress intensity factors becomes computationally difficult when the body constitutes of two different materials or is non-homogenous or made of composites. Fracture at bi-material interface is different from its homogenous counterpart because of mixed mode stress condition that prevails at the crack tip even when the geometry is symmetric and loading unidirectional. Because of this, the mode 1 and mode 2 stress intensity factors can not be decoupled to represent tension and shear stress fields as can be done in the case of homogeneous materials. Mathematically, the stress intensity factors at bi-material interfaces are complex due to oscillatory singularity that exists at the crack tip.
Although plenty of literature is available for bi-material systems subjected to mechanical loads, very little information is available on problems related to thermal loads. Besides, problems related to transient thermal loads need special attention, since no thermal weight functions are available and the existing methods are computationally expensive. Therefore, the present investigation has been undertaken to develop computational and analytical approaches for obtaining the Mode 1 and Mode 2 stress intensity factors for bi-material interface crack problems using conservation of energy principle in conjunction with the weight function approach for various kinds of thermal loads. In the beginning of the studies, a method to extract the Mode 1 and Mode 2 stress intensity factors for bi-material interface crack subjected to mechanical load is proposed using the concept of Jk integrals. This is extended to thermal loads using J2 line integral and J2 domain integral. Furthermore, weight functions are analytically derived for thermal bi-material stress intensity factors and a computational scheme is developed. These methods are validated for several benchmark problems with known solutions.
|
6 |
Studies on Fracture and Fatigue Behavior of Cementitious Materials- Effects of Interfacial Transition Zone, Microcracking and Aggregate BridgingKeerthy, M Simon January 2015 (has links) (PDF)
The microstructure of concrete contains random features over a wide range of length scales in which each length scale possess a new random composite. The influence of individual material constituents at different scales and their mutual interactions are responsible for the formation of fracture process zone (FPZ). The presence of the FPZ and the various toughening mechanism occurring in it, influences the fatigue and fracture behavior of concrete which also gets influenced by the geometry, spacial distribution and material properties of individual material constituents and their mutual interactions. Hence, in order to study the influence of interfacial transition zone, microcrack and aggregate bridging on the fracture and fatigue behavior of concrete, a multiscale analysis becomes necessary.
This study aims at developing a linearized model which helps in understanding the fracture and fatigue behavior of cementitious materials by considering the predominant fracture process zone (FPZ) mechanisms such as microcracking and aggregate bridging. This is achieved by quantifying the critical microcrack length and the bridging resistance offered by the aggregates. Further, the moment carrying capacity of a cracked concrete beam is determined by considering the effect of aggregate bridging. A modified stress intensity factor (SIF) is derived based on linear elastic fracture mechanics (LEFM) approach by considering the material behavior at different scales through a multiscale approach. The model predicts the entire crack growth curve for plain concrete by considering these process zone mechanisms.
Furthermore, the fracture and fatigue response of concrete is studied through the development of analytical models which include the properties of the mix constituents using the multiscale based SIF. The effect of the interfacial transition zone, microcracks and resistance offered through aggregate bridging on the resistance to crack initiation and propagation are studied. A fatigue crack growth law is proposed using the concepts of dimensional analysis and self-similarity. Through sensitivity analyses, the influence of different parameters on the overall fracture and fatigue behavior are studied.
In addition, studies related to concrete-concrete bi-material interfaces are conducted in order to understand the influence of repair materials on the service life of damaged concrete structures when subjected to fatigue loading. An analytical model is proposed in this study to predict the crack growth curve using the concepts of dimensional analysis and self-similarity in conjunction with the human population growth model. It is seen that a repair done with a patch having similar elastic properties as those of the parent concrete will have a larger fatigue life.
|
7 |
Problém trhliny v blízkosti bimateriálové rozhraní / Problem of the crack terminating at the bimaterial interfaceSvoboda, Miroslav January 2012 (has links)
The objective of this diploma thesis is the stress-strain analysis of the crack terminating at the orthotropic bi-material interface suggested as the plane problem of the linear fracture mechanics. The first part is engaged in basic relations of the linear fracture mechanics. The second part is focused on the singularity exponent evaluation for the crack impinging and generally inclined with respect to the bi-material interface. It follows the determination of the generalized stress intensity factors applying the analytical-numerical approach represented by the finite element analysis. The last part of this work is focused on the testing of algorithms applied to the specific crack and bi-material interface configurations. A conclusion discusses the influence of the bi-material mechanical properties and the angel of the crack inclination to the obtained numerical results.
|
Page generated in 0.1132 seconds