Spelling suggestions: "subject:"bifurcação"" "subject:"bifurcated""
31 |
Análise da dinâmica caótica de pêndulos com excitação paramétrica no suporte / Analysis of chaotic dynamics of pendulums with parametric excitation of the supportVinícius Santos Andrade 08 July 2003 (has links)
Este trabalho apresenta a modelagem de um problema representado por um pêndulo elástico com excitação paramétrica vertical do suporte e a análise de estabilidade do sistema pendular que se obtém desconsiderando a elasticidade do pêndulo. A modelagem dos pêndulos e a obtenção das equações do movimento são feitas a partir da equação de Lagrange, utilizando as leis de Newton e para a análise de estabilidade do sistema pendular são apresentados os diagramas de bifurcações, multiplicadores de Floquet, mapas e seções de Poincaré e expoentes de Lyapunov. O comportamento do sistema pendular com excitação paramétrica vertical do suporte é investigado através de simulação computacional e apresentam-se resultados para diferentes faixas de valores da amplitude de excitação externa. / This work presents the modeling of an elastic pendulum with parametric excitation of the support and the analysis of the stability of the pendulum that one obtains disregarding the elasticity of the pendulum. The modeling of the pendulum and the equation of motions are obtained from the Lagrange\'s equations, using Newton\'s law. The concepts of bifurcation, Floquet\'s multipliers, Poincaré maps and sections and Lyapunov exponent are presented for the analysis of stability. The behavior of the pendulum with parametric excitation of the suport is investigated through computational simulation and results for different intervals of values of the external excitation amplitude are presented.
|
32 |
Amplificação de pequenos sinais em osciladores parametricamente forçados.SANTOS, Desiane Maiara Gomes dos. 29 August 2018 (has links)
Submitted by Maria Medeiros (maria.dilva1@ufcg.edu.br) on 2018-08-29T14:12:32Z
No. of bitstreams: 1
DESIANE MAIARA GOMES DOS SANTOS - DISSERTAÇÃO (PPGF) 2015.pdf: 6011160 bytes, checksum: a5021549766593cfe2eb8fe5314ea39b (MD5) / Made available in DSpace on 2018-08-29T14:12:32Z (GMT). No. of bitstreams: 1
DESIANE MAIARA GOMES DOS SANTOS - DISSERTAÇÃO (PPGF) 2015.pdf: 6011160 bytes, checksum: a5021549766593cfe2eb8fe5314ea39b (MD5)
Previous issue date: 2015-04-10 / Capes / Nesta dissertação, analisamos a dinâmica de osciladores parametricamente forçados,
com enfoque na amplificação de pequenos sinais. Iniciamos por uma revisão da ressonância paramétrica e da amplificação paramétrica em um oscilador linear parametricamente excitado. Em seguida, estudamos dois tipos de osciladores não-lineares parametricamente forçados e concluímos a dissertação com a análise de um dímero parametricamente excitado. Basicamente, analisamos os fenômenos de ressonância paramétrica e de amplificação paramétrica, comparando os resultados obtidos analiticamente (via métodos da média ou do balanço harmônico) com os obtidos via integração numérica das equações do movimento. Em todos os casos, obtivemos a linha de transição para a instabilidade paramétrica do oscilador paramétrico. Nós excitamos os amplificador paramétrico com e sem dessintonia entre entre o bombeamento e o sinal externo ac. Verificamos que o ganho da amplificação paramétrica depende da sensitivamente na fase do sinal externo ac e na amplitude do bombeamento. Mostramos que tais sistemas podem ser facilmente utilizados para recepção e decodificação de sinais com modulação de fase. Além disso, obtivemos séries temporais, envelopes e transformadas de Fourier para a resposta da amplificação paramétrica de pequenos sinais ac. Especificamente nos casos dos osciladores de Duffing parametricamente forçados, obtivemos e analisamos linhas de bifurcação e a amplitude
dos ciclos limites como função da frequência e da amplitude de bombeamento. Adicionalmente, conseguimos obter uma relação analítica para os ganhos do sinal e do idler dos osciladores não-lineares parametricamente forçados pelo método do balanço harmônico. Os resultados obtidos implicam que os amplificadores paramétricos não-lineares podem ser excelentes detectores, especialmente em pontos próximos a bifurcações para instabilidade, em que apresentam altos ganhos e largura de banda bem estreitas. Por último, investigamos também o comportamento de dois osciladores lineares acoplados e parametricamente estimulados, com e sem força externa ac. Tais sistemas são muito sensíveis à fase do sinal a ser amplificado e podem ser utilizados para criar amplificadores sintonizáveis em função do parâmetro de acoplamento. / In this dissertation, we studied the dynamics of parametrically-driven oscillators, with a focus on the amplification of small signals. We begin with a revision of parametric resonance and parametric amplification in a linear oscillator parametrically excited. Next,
we studied two types of nonlinear parametrically-driven oscillators and finished the dissertation with an analysis of a parametric dimer. Basically, we analyzed the phenomena
of parametric resonance and parametric amplification by comparing the results obtained
analytically (via the averaging or harmonic balance methods) with those of numerical
integration of the equations of motion. In all cases, we obtained the transition line to
parametric instability of the parametric oscillator. We excited the parametric amplifier
with and without detuning between the pump and the external signal. We found that the
parametric amplification depends sensitively on the phase of the external ac signal and on
the internal pump amplitude. We showed that such amplifiers can be easily used for the
reception and decoding of signals with phase modulation. Furthermore, we obtained time
series, envelopes, and Fourier transforms of the response of the parametric amplifier to
small external ac signals. Specifically in the cases of the parametrically-driven Duffing oscillators, we obtained and analysed the bifurcation lines and the amplitude of limit cycles as function of the pump amplitude and frequency. In addition, we derived an expression for the signal and idler gains of the nonlinear parametrically-driven oscillators with the harmonic balance method. The results imply that the nonlinear parametric amplifiers can be excellent detectors, specially near bifurcations to instability, due to their high gains and narrow bandwidths. Finally, we studied the dynamics of two linear oscillators coupled and parametrically excited, with and without external ac driving. We found that such systems have a wealth of dynamical responses. They present parametric amplification that is dependent on the coupling parameter and on the phases of the external ac signals. Such systems may be used as tunable amplifiers.
|
33 |
A qualitative study of planar piecewise smooth vector fields / Um estudo qualitativo de campos de vetores suaves por partes no planoCardoso Filho, João Lopes 18 May 2018 (has links)
Submitted by Liliane Ferreira (ljuvencia30@gmail.com) on 2018-06-14T11:12:47Z
No. of bitstreams: 2
Tese - João Lopes Cardoso Filho - 2018.pdf: 1729607 bytes, checksum: 8279e98ec23b68bab062f8c812957bf4 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-06-15T10:25:16Z (GMT) No. of bitstreams: 2
Tese - João Lopes Cardoso Filho - 2018.pdf: 1729607 bytes, checksum: 8279e98ec23b68bab062f8c812957bf4 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-06-15T10:25:16Z (GMT). No. of bitstreams: 2
Tese - João Lopes Cardoso Filho - 2018.pdf: 1729607 bytes, checksum: 8279e98ec23b68bab062f8c812957bf4 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-05-18 / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / In this work we exhibit canonical forms for 2D codimension one piecewise smooth
vector Fields (PSVF). All possible orientations and codimension one scenarios were
covered. Also the intrinsic objects that characterize each one of the canonical forms
were presented. Also we present topological distinct canonical forms for a larger
class for symmetric PSVF where the set of fixed points is contained in the variety os
discontinuity. Finally we analyze the simultaneous occurrence of sliding and crossing
limit cycle in the case where the piecewise linear vector fields presents a continuum
of periodic orbits. / Neste trabalho exibiremos inicialmente as formas canônicas para campos vetoriais
suaves por partes (PSVF) no plano. Todas os possíveis cenários de codimensão um
são abordados. Também apresentamos formas canônicas topologicamente distintas
para uma classe de PSVF com simetria onde o conjunto de pontos fixos está contido
na variedade de descontinuidade. Finalmente, analisaremos a ocorrência simultânea
de ciclos limite costurantes e deslizantes no caso linear por partes que apresentam
um contínuo de órbitas periódicas.
|
Page generated in 0.057 seconds