Spelling suggestions: "subject:"bandradar"" "subject:"biodegradar""
1 |
A Travelling Wave Slot Array based on a Double-Layer Lens for 77 GHz Automotive RadarUgle, Ashray January 2023 (has links)
Automotive radars have gained considerable interest in recent years for applications of road safety for vulnerable road users. The use of multipleinput and multiple-output (MIMO) technology in automotive radar has helped in realising a virtual aperture greater than the physical aperture of the antenna which has reduced the size of the overall radar module. But increasing the number of MIMO channels for greater angular resolution can introduce increased computational complexity, processing time and latency. A new type of radar using the multiple input multiple steered output (MIMSO) radar can alleviate these concerns by replacing the angle-FFT with beamforming by means of a lens. A double-layer lens with a beamforming layer and a radiating layer with a radiating aperture on the 2-D footprint of the lens is proposed as an antenna system for this new radar technique. This work focuses on the radiating aperture which has been realised as a travelling wave planar slotted array in gap waveguide technology due to its benefit of low losses and ease of manufacturing. A ridged gap waveguide is chosen for the reduction of the waveguide size and to avoid the appearance of grating lobes in the visible range for large scan angles. The planar slotted array is synthesised in the travelling wave configuration and reflection cancelling notches are used in the ridge to cancel the reflections from the slots. The aperture is chosen to be of a circular shape for a compact design and to maximise aperture efficiency. The planar array is verified with a full-wave simulation with a bandwidth of 76 to 81 GHz and a realised gain of 27.7 dBi at the centre frequency. The array can be scanned up to ±50◦ with a scan loss of 2.4 dBi. / Fordonsradarer har fått stort intresse under de senaste åren för tillämpningar av trafiksäkerhet för utsatta trafikanter. Användningen av MIMO-teknik (multipleinput och multiple-output) i bilradar har hjälpt till att realisera en virtuell bländaröppning som är större än antennens fysiska bländaröppning, vilket har minskat storleken på den totala radarmodulen. Men att öka antalet MIMOkanaler för större vinkelupplösning kan introducera ökad beräkningskomplexitet, bearbetningstid och latens. En ny typ av radar som använder MIMSO-radarn (multiple input multiple steered output) kan lindra dessa problem genom att ersätta vinkel-FFT med strålformning med hjälp av en lins. En dubbelskiktslins med ett strålformande skikt och ett strålande skikt med en strålande bländare på linsens 2D-fotavtryck föreslås som ett antennsystem för denna nya radarteknik. Detta arbete fokuserar på strålningsöppningen som har realiserats som en plan slitsad array i gap-vågledarteknologi på grund av dess fördel med låga förluster och enkel tillverkning. En vågledare med räfflade gap väljs för att minska vågledarstorleken och för att undvika uppkomsten av gitterlober i det synliga området för stora avsökningsvinklar. Den plana uppsättningen syntetiseras i den vandringsvågkonfigurationen och reflektionsupphävande skåror används i åsen för att eliminera reflektionerna från slitsarna. Bländaren är vald för att ha en cirkulär form för en kompakt design och för att maximera bländareffektiviteten. Planar arrayen verifieras med en helvågssimulering med en bandbredd på 76 till 81 GHz och en realiserad vinst på 27, 7 dBi vid mittfrekvensen. Arrayen kan skannas upp till ±50◦ med en skanningsförlust på 2, 4 dBi.
|
2 |
Evaluation of FMCW Radar Jamming SensitivitySnihs, Ludvig January 2023 (has links)
In this work, the interference sensitivity of an FMCW radar has been evaluated by studying the impact on a simulated detection chain. A commercially available FMCW radar was first characterized and its properties then laid the foundation for a simulation model implemented in Matlab. Different interference methods have been studied and a selection was made based on the results of previous research. One method aims to inject a sufficiently large amount of energy in the form of pulsed noise into the receiver. The second method aims to deceive the radar into seeing targets that do not actually exist by repeating the transmitted signal and thus giving the radar a false picture of its surroundings. The results show that if it is possible to synchronize with the transmitted signal then repeater jamming can be effective in misleading the radar. In one scenario the false target even succeeded in hiding the real target by exploiting the Cell-Averaging CFAR detection algorithm. The results suggests that without some smart countermeasures the radar has no way of distinguishing a coherent repeater signal, but just how successful the repeater is in creating a deceptive environment is highly dependent on the detection algorithm used. Pulsed noise also managed to disrupt the radar and with a sufficiently high pulse repetition frequency the detector could not find any targets despite a simulated object in front of the radar. On the other hand, a rather significant effective radiated power level was required for the pulse train to achieve any meaningful effect on the radar, which may be due to an undersampled signal in the simulation. It is therefore difficult based on this work to draw any conclusions about how suitable pulsed noise is in a non-simulated interference context and what parameter values to use.
|
Page generated in 0.0478 seconds