• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enhancement of target detection using software defined radar (SDR)

Youssef, Ahmed 11 December 2018 (has links)
Three novel approaches that are based on a recent communication technique called time compression overlap-add (TC-OLA), are introduced into pulse compression (PC) radar systems to improve the radar waveform shaping and enhance radar performance. The first approach lays down a powerful framework for combining the TC-OLA technique into traditional PC radar system. The new TC-OLA-based radar obtained is compared with other radars, namely traditional linear frequency modulation (LFM), and wideband LFM which has the same processing gain under different background situations. The results show the superiority of the proposed radar over the others. The second approach combines a random phase noise signal with a selected radar signal to build a new radar system, SSLFM radar, that enjoys the low-probability of intercept property, and, therefore, has higher immunity against noise jamming techniques compared with other radar systems. The properly recovery of the transmitted signal, however, requires a synchronization system at the receiver side. In this dissertation, we propose three synchronization systems each having different pros and cons. The last approach takes the radar waveform design methodology in a different direction and proposes a novel framework to combine any number of radar signal and transmit them simultaneously. Instead of trying to achieve universality through waveform shaping optimization, we do so via pluralism. As a proof of concept, all the proposed radars have been implemented and tested on software-defined radar (SDR). The theoretical and the experimental results showed the superiority of all proposed radar systems. Since TC-OLA is fundamental to this work, we add a chapter to propose a new technique called downsample upsample shift add (DUSA) to address the limitations of the existing implementation of TC-OLA. / Graduate
2

Analysis of frequency hopping system with 2-ARY FSK and BPSK modulation and an implementation of a coherent 2-ARY FSK/FH modem

Zawawi, Naim B. January 1983 (has links)
No description available.
3

Study on the Simulation and Analysis of an FH/FDMA OBP Satellite Based Mobile Communication System Under Critical Channel Impairment

Orra, Mike 07 September 2010 (has links)
No description available.
4

Performance analysis of the IEEE 802.11A WLAN standard optimum and sub-optimum receiver in frequency-selective, slowly fading Nakagami channels with AWGN and pulsed noise jamming

Kalogrias, Christos 03 1900 (has links)
Approved for public release, distribution is unlimited / Wide local area networks (WLAN) are increasingly important in meeting the needs of next generation broadband wireless communications systems for both commercial and military applications. Under IEEE 802.11a 5GHz WLAN standard, OFDM was chosen as the modulation scheme for transmission because of its well-known ability to avoid multi-path effects while achieving high data rates. The objective of this thesis is to investigate the performance of the IEEE 802.11a WLAN standard receiver over flat fading Nakagami channels in a worst case, pulse-noise jamming environment, for the different combinations of modulation type (binary and non-binary modulation) and code rate specified by the WLAN standard. Receiver performance with Viterbi soft decision decoding (SDD) will be analyzed for additive white Gaussian noise (AWGN) alone and for AWGN plus pulse-noise jamming. Moreover, the performance of the IEEE 802.11a WLAN standard receiver will be examined both in the scenario where perfect side information is considered to be available (optimum receiver) and when it is not (sub-optimum receiver). In the sub-optimum receiver scenario, the receiver performance is examined both when noise-normalization is utilized and when it is not. The receiver performance is severely affected by the pulse-noise jamming environment, especially in the suboptimum receiver scenario. However, the sub-optimum receiver performance is significantly improved when noise-normalization is implemented. / Lieutenant, Hellenic Navy
5

A game theoretic analysis of adaptive radar jamming

Bachmann, Darren John Unknown Date (has links) (PDF)
Advances in digital signal processing (DSP) and computing technology have resulted in the emergence of increasingly adaptive radar systems. It is clear that the Electronic Attack (EA), or jamming, of such radar systems is expected to become a more difficult task. The reason for this research was to address the issue of jamming adaptive radar systems. This required consideration of adaptive jamming systems and the development of a methodology for outlining the features of such a system is proposed as the key contribution of this thesis. For the first time, game-based optimization methods have been applied to a maritime counter-surveillance/counter-targeting scenario involving conventional, as well as so-called ‘smart’ noise jamming.Conventional noise jamming methods feature prominently in the origins of radar electronic warfare, and are still widely implemented. They have been well studied, and are important for comparisons with coherent jamming techniques.Moreover, noise jamming is more readily applied with limited information support and is therefore germane to the problem of jamming adaptive radars; during theearly stages when the jammer tries to learn about the radar’s parameters and its own optimal actions.A radar and a jammer were considered as informed opponents ‘playing’ in a non-cooperative two-player, zero-sum game. The effects of jamming on the target detection performance of a radar using Constant False Alarm Rate (CFAR)processing were analyzed using a game theoretic approach for three cases: (1) Ungated Range Noise (URN), (2) Range-Gated Noise (RGN) and (3) False-Target (FT) jamming.Assuming a Swerling type II target in the presence of Rayleigh-distributed clutter, utility functions were described for Cell-Averaging (CA) and Order Statistic (OS) CFAR processors and the three cases of jamming. The analyses included optimizations of these utility functions, subject to certain constraints, with respectto control variables (strategies) in the jammer, such as jammer power and spatial extent of jamming, and control variables in the radar, such as threshold parameter and reference window size. The utility functions were evaluated over the players’ strategy sets and the resulting matrix-form games were solved for the optimal or ‘best response’ strategies of both the jammer and the radar.
6

A game theoretic analysis of adaptive radar jamming

Bachmann, Darren John Unknown Date (has links) (PDF)
Advances in digital signal processing (DSP) and computing technology have resulted in the emergence of increasingly adaptive radar systems. It is clear that the Electronic Attack (EA), or jamming, of such radar systems is expected to become a more difficult task. The reason for this research was to address the issue of jamming adaptive radar systems. This required consideration of adaptive jamming systems and the development of a methodology for outlining the features of such a system is proposed as the key contribution of this thesis. For the first time, game-based optimization methods have been applied to a maritime counter-surveillance/counter-targeting scenario involving conventional, as well as so-called ‘smart’ noise jamming.Conventional noise jamming methods feature prominently in the origins of radar electronic warfare, and are still widely implemented. They have been well studied, and are important for comparisons with coherent jamming techniques.Moreover, noise jamming is more readily applied with limited information support and is therefore germane to the problem of jamming adaptive radars; during theearly stages when the jammer tries to learn about the radar’s parameters and its own optimal actions.A radar and a jammer were considered as informed opponents ‘playing’ in a non-cooperative two-player, zero-sum game. The effects of jamming on the target detection performance of a radar using Constant False Alarm Rate (CFAR)processing were analyzed using a game theoretic approach for three cases: (1) Ungated Range Noise (URN), (2) Range-Gated Noise (RGN) and (3) False-Target (FT) jamming.Assuming a Swerling type II target in the presence of Rayleigh-distributed clutter, utility functions were described for Cell-Averaging (CA) and Order Statistic (OS) CFAR processors and the three cases of jamming. The analyses included optimizations of these utility functions, subject to certain constraints, with respectto control variables (strategies) in the jammer, such as jammer power and spatial extent of jamming, and control variables in the radar, such as threshold parameter and reference window size. The utility functions were evaluated over the players’ strategy sets and the resulting matrix-form games were solved for the optimal or ‘best response’ strategies of both the jammer and the radar.
7

Evaluation of FMCW Radar Jamming Sensitivity

Snihs, Ludvig January 2023 (has links)
In this work, the interference sensitivity of an FMCW radar has been evaluated by studying the impact on a simulated detection chain. A commercially available FMCW radar was first characterized and its properties then laid the foundation for a simulation model implemented in Matlab. Different interference methods have been studied and a selection was made based on the results of previous research. One method aims to inject a sufficiently large amount of energy in the form of pulsed noise into the receiver. The second method aims to deceive the radar into seeing targets that do not actually exist by repeating the transmitted signal and thus giving the radar a false picture of its surroundings. The results show that if it is possible to synchronize with the transmitted signal then repeater jamming can be effective in misleading the radar. In one scenario the false target even succeeded in hiding the real target by exploiting the Cell-Averaging CFAR detection algorithm. The results suggests that without some smart countermeasures the radar has no way of distinguishing a coherent repeater signal, but just how successful the repeater is in creating a deceptive environment is highly dependent on the detection algorithm used. Pulsed noise also managed to disrupt the radar and with a sufficiently high pulse repetition frequency the detector could not find any targets despite a simulated object in front of the radar. On the other hand, a rather significant effective radiated power level was required for the pulse train to achieve any meaningful effect on the radar, which may be due to an undersampled signal in the simulation. It is therefore difficult based on this work to draw any conclusions about how suitable pulsed noise is in a non-simulated interference context and what parameter values to use.

Page generated in 0.0671 seconds