• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 9
  • 6
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 55
  • 15
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Structural changes during cellulose composite processing

Halonen, Helena January 2012 (has links)
Two approaches for creating a new all-cellulose composite material have been studied: the biosynthesis of compartmentalised bacterial cellulose fibril aggregates and the compression moulding of commercial chemical wood pulps processed with only water. The objective was to study the structural changes during processing and the complexity of relating the mechanical properties of the final biocomposites to the nanoscale structure was highlighted. Solid-state CP/MAS 13C NMR spectroscopy was utilised to determine both the fibril aggregate width and the content of the different crystalline cellulose forms, cellulose I and cellulose II. Using this method, the quantities of hemicellulose present inside the fibre wall and localised at the fibre surfaces could be determined. The formation of cellulose fibrils was affected by the addition of hydroxyethylcellulose (HEC) to a culture medium of Acetobacter aceti, and the fibrils were coated with a thin layer of HEC, which resulted in loose bundles of fibril aggregates. The HEC coating, improved the fibril dispersion in the films and prevented fractures, resulting in a biocomposite with remarkable mechanical properties including improved strength (289 MPa), modulus (12.5 GPa) and toughness (6%). The effect of press temperature was studied during compression moulding of sulphite dissolving-grade pulps at 45 MPa. A higher press temperature yielded increases in the fibril aggregation, water resistance (measured as the water retention value) and Young’s modulus (12 GPa) in the final biocomposite. The high pressure was important for fibril aggregation, possibly including cellulose-cellulose fusion bonds, i.e., fibril aggregation in the fibre-fibre bond region. The optimal press temperature was found to be 170°C because cellulose undergoes thermal degradation at higher temperatures. The effect of hemicellulose was studied by comparing a softwood kraft paper-grade pulp with a softwood sulphite paper and a softwood sulphite dissolving-grade pulp. A significant fibril aggregation of the sulphite pulps suggested that the content and distribution of hemicellulose affected the fibril aggregation. In addition, the hemicellulose structure could influence the ability of the hemicellulose to co-aggregate with cellulose fibrils. Both sulphite pulp biocomposites exhibited Young’s moduli of approximately 12 GPa, whereas that of the kraft pulp was approximately half that value at 6 GPa. This result can be explained by a higher sensitivity to beating in the sulphite pulps. The effect of mercerisation, which introduces disordered cellulose, on the softwood sulphite dissolving-grade pulp was also studied under compression moulding at 170°C and 45 MPa. The mechanisms causing an incomplete transformation of cellulose I to II in a 12 wt% NaOH solution were discussed. The lower modulus of cellulose II and/or the higher quantity of disordered cellulose likely account for the decrease in Young’s modulus in the mercerised biocomposites (6.0 versus 3.9 GPa). / Två metoder för att skapa ett nytt kompositmaterial baserat på enbart cellulosa har studerats, biosyntes av fibrillaggregat bestående av bakteriecellulosa och varmpressning av kommersiella träfiberbaserade massor med vatten som den enda processkemikalien. Målet var att studera de strukturella förändringarna som sker under tillverkningsprocessen. Även komplexiteten i att relatera strukturen på nanonivå till de mekaniska egenskaperna hos de slutliga biokompositerna belystes. Med fastfas CP/MAS 13C NMR-spektroskopi var det möjligt att bestämma både fibrillaggregattjockleken och mängden av cellulosakristallformerna; cellulosa I och cellulosa II. Det var också möjligt att bestämma mängden hemicellulosa dels närvarande inuti fiberväggen och dels mängden lokaliserad på fiberytor. Tillsats av hydroxyetylcellulosa (HEC) i odlingsmediet för Acetobacter aceti påverkade bildandet av cellulosafibriller som blev belagda med ett tunt skikt av HEC, vilket också resulterade i löst bundna fibrillaggregat. HEC-beläggningen förbättrade fibrilldispersionen i filmerna och minskade sprickbildningen, vilket gav en biokomposit med mycket goda mekaniska egenskaper med kombinerad hög styrka (289 MPa), styvhet (12.5 GPa) och seghet (6%). Effekten av presstemperatur vid varmpressning (45 MPa tryck) studerades på sulfit dissolvingmassor. Högre presstemperatur gav ökad fibrillaggregering, ökat vattenmotstånd (mätt som vattenretentionsvärde) och högre styvhet (12 GPa) för biokompositen. Det höga trycket var också viktigt för fibrillaggregeringen, som troligen omfattar cellulosa-cellulosa samkristallisation dvs. fibrillaggregering i fiber-fiber-bindningsregionen. Den optimala presstemperaturen föreslogs vara 170° C pga. termisk nedbrytning av cellulosa vid högre temperaturer. Effekten av hemicellulosa studerades genom att jämföra sulfat pappersmassa med sulfit pappersmassa och sulfit dissolvingmassa. Mängden och fördelningen av hemicellulosa föreslogs ligga till grund för skillnaden i fibrillaggregering, som var mera uttalad i sulfitmassorna. Även hemicellulosans struktur kan påverka förmågan hos hemicellulosa att sam-aggregera med cellulosafibriller. Biokompositerna baserade på sulfitmassorna hade en styvhet på ca. 12 GPa, medan sulfatmassan bara hade hälften av den nivån ca. 6 GPa, vilket förklarades av sulfitmassornas högre känslighet för malning. Även effekten av mercerisering av sulfit dissolvingmassa varmpressad vid 170° C och 45 MPa studerades. Mercerisering introducerar oordnad cellulosa och mekanismerna som endast ger en partiell omvandling av cellulosa I till II i en 12 vikt% NaOH-lösning diskuterades. Den sämre styvheten hos den merceriserade biokompositen (6.0 resp. 3.9 GPa) förklaras troligen genom cellulosa II kristallens lägre styvhet och/eller den högre mängden av oordnad cellulosa. / <p>QC 20121106</p> / Wallenberg Wood Science Center / Biomime
22

Development and Characterization of Compression Molded Flax Fiber-Reinforced Biocomposites

Rana, Anup 15 July 2008
Flax fibers are often used as reinforcement for thermoset and thermoplastic to produce biocomposite products. These products exhibit numerous advantages such as good mechanical properties, low density, and biodegradability. Thermoplastics are usually reinforced with flax fiber using injection molding technology and limited research has been done on compression molded thermoplastic biocomposite. Therefore, commercial thermoplastic high density polyethylene (HDPE) and polypropylene (PP) were selected for developing compression molded flax reinforced biocomposites in this research project. The main goal of this research was to develop compression molded biocomposite board using Saskatchewan flax fiber and investigate the effect of flax fiber and processing parameters (molding temperature and molding pressure) on the properties of biocomposite. <p>The fiber was cleaned and chemically treated with alkaline and silane solution that modified the fiber surface. Chemical treatments significantly increased the mechanical properties due to better fiber-polymer interfacial adhesion and also reduced the water absorption characteristics. The silane treatment showed better results than alkaline treatment. Differential scanning calorimetry (DSC) test and scanning electron microscopy (SEM) test were performed to study the thermal and morphological properties of the untreated and chemically treated flax fiber. Flax fiber and thermoplastic resin was mixed using a single-screw extruder to ensure homogenous mixing. HDPE- and PP-based biocomposites were developed through compression molding with three different pretreated flax fiber (untreated, alkaline, silane treated fiber), three levels of fiber content, two levels of molding temperature and two levels of molding pressure. <p>Increase in fiber content increased composite color index, density, water absorption, tensile strength, Youngs modulus, bending strength, and flexural modulus. However for the HDPE composites, tensile and bending strength decreased after 20% flax fiber loading. For the PP composites the, tensile and bending strength decreased after 10% flax fiber loading. Analysis of variance (ANOVA) was performed to quantitatively show the significant effects of the process variables (molding temperature, pressure, and fiber content) and their interactions on the response variables (physical and mechanical properties of biocomposites). The duncan multiple range test (DMRT) was also performed to compare the treatment means. Superposition surface methodology was adapted for both HDPE and PP composites to determine the optimum values of process variables.
23

A new composite material consisting of flax fibers, recycled tire rubber and thermoplastic

Fung, Jimmy Chi-Ming 19 November 2009
Canadian grown oilseed flax is known for its oils that are used for industrial products. The flax fiber may also have a use as a potential replacement for synthetic fibers as reinforcement in plastic composites. It can also be utilized as a cost effective and environmentally acceptable supplement in the biodegradable composites. Tire rubber is a complex material which does not decompose naturally. As a result, many researchers have been trying to develop new applications for recycling scrap tires. The conversion of flax straw and scrap tire into a profitable product may benefit the agricultural economy, tire recycling market, and our environment. The main goal of this research was to develop a biocomposite material containing recycled ground tire rubber (GTR), untreated flax fiber, and linear low-density polyethylene (LLDPE).<p> In this study, the new biocomposite material was successfully prepared from flax fiber/shives, GTR, and LLDPE through extrusion and compression molding processes. The composites were compounded through a single-screw extruder. Then the pelletized extrudates were hot pressed into the final biocomposites. The properties of the flax fiber-GTR-LLDPE biocomposites were defined by using tearing, tensile, water absorption, hardness, and differential scanning calorimetry (DSC) tests. The effects of the independent variables (flax fiber content and GTR-LLDPE ratio) on each of the dependent variables (tear strength from tearing test, tensile yield strength and Youngs modulus from tensile test, and weight increase from water absorption test) were modeled. The properties of the composites can be predicted by using the mathematical model with known flax fiber content and GTR-LLDPE ratio.<p> The tensile yield strength and stiffness of the biocomposite were improved with the addition of flax fiber. The optimal composition of the biocomposite material (with strongest tensile yield strength or highest Youngs modulus) was calculated by using the model equations. The maximum yield strength was found to exist for a flax fiber content of 10.7% in weight and GTR-LLDPE ratio of one. The largest Youngs modulus was found for a fiber content of 17.7% by weight and the same GTR-LLDPE ratio. Both of these fiber contents were less than the amount that would give a composite with a 2% weight increase in water absorption.
24

Development and Characterization of Compression Molded Flax Fiber-Reinforced Biocomposites

Rana, Anup 15 July 2008 (has links)
Flax fibers are often used as reinforcement for thermoset and thermoplastic to produce biocomposite products. These products exhibit numerous advantages such as good mechanical properties, low density, and biodegradability. Thermoplastics are usually reinforced with flax fiber using injection molding technology and limited research has been done on compression molded thermoplastic biocomposite. Therefore, commercial thermoplastic high density polyethylene (HDPE) and polypropylene (PP) were selected for developing compression molded flax reinforced biocomposites in this research project. The main goal of this research was to develop compression molded biocomposite board using Saskatchewan flax fiber and investigate the effect of flax fiber and processing parameters (molding temperature and molding pressure) on the properties of biocomposite. <p>The fiber was cleaned and chemically treated with alkaline and silane solution that modified the fiber surface. Chemical treatments significantly increased the mechanical properties due to better fiber-polymer interfacial adhesion and also reduced the water absorption characteristics. The silane treatment showed better results than alkaline treatment. Differential scanning calorimetry (DSC) test and scanning electron microscopy (SEM) test were performed to study the thermal and morphological properties of the untreated and chemically treated flax fiber. Flax fiber and thermoplastic resin was mixed using a single-screw extruder to ensure homogenous mixing. HDPE- and PP-based biocomposites were developed through compression molding with three different pretreated flax fiber (untreated, alkaline, silane treated fiber), three levels of fiber content, two levels of molding temperature and two levels of molding pressure. <p>Increase in fiber content increased composite color index, density, water absorption, tensile strength, Youngs modulus, bending strength, and flexural modulus. However for the HDPE composites, tensile and bending strength decreased after 20% flax fiber loading. For the PP composites the, tensile and bending strength decreased after 10% flax fiber loading. Analysis of variance (ANOVA) was performed to quantitatively show the significant effects of the process variables (molding temperature, pressure, and fiber content) and their interactions on the response variables (physical and mechanical properties of biocomposites). The duncan multiple range test (DMRT) was also performed to compare the treatment means. Superposition surface methodology was adapted for both HDPE and PP composites to determine the optimum values of process variables.
25

Contribution a l'étude des matériaux composites renforcés par des fibres végétales aiguilletées / Study of composite materials reinforced by plant fibre/polymer commingled nonwoven

Merotte, Justin 07 July 2017 (has links)
Proposer des solutions permettant de concevoir et de fabriquer des pièces automobiles performantes mais également respectueuses de l’environnement est devenu un enjeu majeur pour les équipementiers automobiles. Ces travaux de thèse s’inscrivent donc dans ce contexte de compréhension et d’amélioration des matériaux composites non-tissés aiguilletées renforcés par des fibres végétales. À partir d’un même matériau de base, il est possible d’obtenir des structures et des propriétés différentes grâce au contrôle du taux de porosités dans le matériau. On peut ainsi conférer au composite de bonne propriétés d’absorption acoustique à des taux de porosités élevés (50%) ou au contrainte privilégier la tenue mécanique du produit en les limitant. La structure du matériau et la liaison fibre/matrice vont évoluer avec la fraction de porosités et en résulteront des comportements mécaniques bien différents. Suivant le taux de porosité, les performances mécaniques seront donc principalement gouvernées par des paramètres différents tels que la liaison interfaciale ou le renfort. Dans un environnement automobile, les conditions climatiques (humidité et température) jouent un rôle prépondérant dans les performances des biocomposites non-tissés. En effet, l’adhérence fibre/matrice est essentiellement liée aux contraintes radiales compressives, qui sont largement influencées par l’état hygrométrique du renfort. Enfin, la valorisation les chutes de fabrication issues de la thermocompression pour modifier la structure du composite non-tissé a permis de développer un produit présentant un gain en rigidité significatif. / Proposing solutions to produce more efficient and environmentally friendly automotive parts has become a major challenge for tier one suppliers. The work described in this thesis is about understanding and improving composite materials made with commingled plant fibre nonwovens. From the same initial nonwoven, it is possible to obtain very distinct material structures by controlling porosity content. One can then give to the material enhanced acoustic properties with high porosity content (50%) or in the contrary show good mechanical properties by limiting porosities. Material structure will evolve with porosity as well as its mechanical behavior. Thus, as function of porosity, interfacial adhesion of fibre mechanical properties will govern composite mechanical properties. Biocomposite automotive parts are exposed to a large range of climatic environments and their mechanical properties can vary significantly. Indeed, radial stresses are drastically influenced by the reinforcement hygroscopic state. Finally, the idea developing an innovative material structure from compression moulding wastes has helped enhancing material rigidity.
26

Étude de la Morphologie et des Propriétés de Biocomposites Poly(3-Hydroxybutyrateco- 3-Hydroxyvalerate) (PHBV)/Farine de Grignons d’Olive / Study of the Morphology and Properties of Poly(3- hydroxybutyrate-co-3-hydroxyvalérate) (PHBV) / Olive Husk Flour Biocomposites.

Hassaini, Leila 13 December 2016 (has links)
Ce travail a pour objectif de développer des biocomposites à base de poly(3-hydroxybutyrate-co-3-hydroxyvalérate) (PHBV) et de farine grignons d'olive (FGO) préparés par mélange fondu. Il s'articule autour de quatre parties. La première partie comprend une étude de la morphologie et des propriétés physiques des échantillons biocomposites PHBV/FGO aux taux de charge de 10, 20 et 30% en masse. Les résultats indiquent que le système PHBV/FGO se caractérise par une séparation de phase dont le nombre et la taille des particules de FGO augmentent avec le taux de charge. De plus, la stabilité thermique et les propriétés barrières vis à vis de la vapeur d'eau et de l'oxygène ont diminué. Par contre, l'incorporation de la FGO dans le PHBV induit une augmentation du module d'Young qui s'accentue avec le taux de charge. La même tendance est également observée avec le module de conservation déterminé par DMA. Dans la seconde partie, l'impact du PHBV-g-MA comme agent compatibilisant dans les biocomposites PHBV/FGO a été évalué en fonction du taux de charge. La caractérisation morphologique du système ternaire a révélé que la présence du PHBV-g-MA dans les biocomposites PHBV/FGO induit une meilleure adhésion interfaciale entre les particules de la FGO et la matrice PHBV en raison des interactions charge-matrice. En conséquence, une nette amélioration des propriétés mécaniques, viscoélastiques et barrières aux gaz (vapeur d'eau et oxygène) est observée. Dans la troisième partie, une modification chimique de la FGO avec le trimethoxy (octadecyl)-silane (TMOS) et son influence sur la morphologie et les propriétés physiques de biocomposites PHBV/FGO: 80/20 ont été étudiées. Les résultats révèlent une dispersion fine et homogène de la FGO traitée au TMOS dans la matrice PHBV avec en apparence moins de microvides en comparaison avec le biocomposite non modifié. Les propriétés physico-mécaniques du biocomposite PHBV/FGO modifiée sont sensiblement améliorées. La dernière partie consacrée à une étude du vieillissement hygrothermique dans l'eau de mer à 25 et 40°C de films de biocomposites PHBV/FGO: 80/20 avant et après modification, révèle que la FGO favorise la cinétique de dégradation du système PHBV/FGO indépendamment du traitement. Toutefois, le biocomposite PHBV/FGO traité avec des organo-silanes se caractérise relativement par une résistance à la dégradation hygrothermique à 25 et 40°C par rapport au reste des échantillons biocomposites. / This work aims to develop a biocomposites based on poly(3-hydroxybutyrate-co-3-hydroxyvalérate) (PHBV) and olive husk flour (OHF) prepared by melt compounding. It's articulated around four parts. The first part includes a study of the morphology and physical properties of the PHBV/OHF biocomposite samples at the loading rates of 10, 20 and 30 wt%. The results indicate that the PHBV/OHF system is characterized by a phase separation whose number and size of OHF particles increases with the loading rate. Moreover, the thermal stability and the barrier properties against water vapor and oxygen have decreased. On the other hand, the incorporation of the OHF in the PHBV matrix induces an increase in the Young's modulus which is accentuated with filler content. The same trend is also observed with the storage modulus determined by DMA. In the second part, the effects of PHBV-g-MA used as the compatibilizer for PHBV/OHF biocomposites were evaluated as a function of the loading rate. The morphological characterization of the ternary system revealed that the presence of PHBV-g-MA in the PHBV/OHF biocomposites induces better interfacial adhesion between the OHF particles and the PHBV matrix due to filler-matrix interactions. Consequently, a significant improvement in the mechanical, viscoelastic and gas barrier properties (water vapor and oxygen) is observed. In the third part, a chemical modification of OHF with trimethoxy(octadecyl)-silane (TMOS) and its influence on the morphology and physical properties of PHBV/OHF: 80/20 biocomposites was studied. The results reveal a fine and homogeneous dispersion of the TMOS-treated OHF in the PHBV matrix with apparently fewer microvides compared to the unmodified biocomposite. The physical and mechanical properties of the modified PHBV/OHF biocomposite are significantly improved. The last part devoted to a study of the hygrothermal aging in sea water at 25 and 40°C of films of biocomposites PHBV/OHF: 80/20 before and after modification reveals that the OHF promotes the degradation kinetics of the PHBV/OHF system regardless of treatment. However, the organo-silane-treated PHBV/OHF biocomposite is relatively characterized by a resistance to hygrothermal degradation at 25 and 40°C compared to the rest of the biocomposite samples.
27

Impacts on recyclability and sustainability in hanger production by replacing polystyrene with the biocomposite DuraSense® Pure S40 Impact D

Santiesteban García, Luisa Fernanda January 2020 (has links)
Biocomposites have gained increasing attention in recent years. The environmental impacts of common plastics have led researchers and industrials to develop alternatives to fully petro-sourced materials (Beigbeder et al., 2019). This paper presents the results obtained from the life cycle assessments conducted for polystyrene (PS) and biocomposite DuraSense® Pure S40 Impact D (DS40). The aim is for DS40 to serve as a more environmentally friendly option to fossil-based plastic in the manufacturing and recycling of hangers. By replacing 40% of the fossil-based PS with wood fibers, DS40 gains an advantage with regard to its environmental impact. Exercising an LCA on a product offers the opportunity to analyze its environmental impacts and sustainability performance based on a cradle to grave perspective. Thus, to determine which factors that could create an adverse effect in the multiple lifecycles of hangers when recycled, four potential environmental factors were used for modelling several scenarios: loss in quality, end-of-life, travel distance, and packaging. The Global Warming Potential (GWP) - kg CO2 equivalent/functional unit was calculated using the GaBi Envision LCA software for each scenario, which subsequently were compared between PS and DS40. After the modelling of multiple scenarios, this study concludes that a hanger recycling system can be a viable activity due to the improved environmental sustainability. However, to remain as the alternative with the lowest GWP, it is necessary to keep what could be detrimental throughout the lives of the hangers made with DS40 to remain out of the loop. Preventing that the incorrect EoL is chosen, abstaining from the use of PE film as packaging, creating products with competent mechanical properties to have good longevity, and reducing the wasted material in each conversion step, make altogether the replacement of PS with DS40 in the production of hangers a less polluting alternative. The result showed that except for travel distance, all other factors considered have the potential to affect the GWP account, and with this, showing that there is more to consider than just the raw materials needed in the manufacturing of goods.
28

Cellulose nanofibril materials with controlled structure : the influence of colloidal interactions

Fall, Andreas January 2011 (has links)
Nanoparticles are very interesting components. Due to their very large specific surface area they possess properties in between molecules and macroscopic materials. In addition, a material built up of hierarchically assembled nanoparticles could obtain unique properties, not possessed by the nanoparticles themself. A very interesting group of nanoparticles is the cellulose nanofibrils. The fibrils are found in various renewable resources such as wood, bacteria and tunicates. In this work fibrils extracted from wood is studied. In wood the fibrils are the smallest fibrous component with the approximate dimensions; 4 nm in width and length in the micrometer range, providing a high aspect ratio. In addition, they have a crystallinity above 60% and, hence, a high stiffness. These fibrils are hierarchically ordered in the wood fiber to give it its unique combination of flexibility and strength. The properties of the fibrils make them very suitable to be used as reinforcement elements in composites and, due to their ability to closely pack, to make films with excellent gas barrier properties. The key aspect to design materials, efficiently utilizing the properties of the individual fibrils, is to control the arrangement of the fibrils in the final material. In order to do so, the interactions between fibrils have to be well characterized and controlled. In this thesis the interaction between fibrils in aqueous dispersions is studied, where the main interactions are attractive van der Waals forces and repulsive electrostatic forces. The electrostatic forces arise from carboxyl groups at the fibrils surface, which either are due to hemicelluloses at the fibrils surfaces or chemically introduced to the cellulose chain. This force is sensitive to the chemical environment. It decreases if the pH is reduced or if the salt concentration is increased. If it is strongly reduced the system aggregates. In dilute dispersions aggregation causes formation of multiple clusters, whereas in semi-dilute dispersions (above the overlap concentration) a volume filling network, i.e. a gel, is formed. The tendency of aggregation, i.e. the colloidal stability, can be predicted by using the DLVO theory. In this thesis DLVO predictions are compared to aggregation measurements conducted with dynamic light scattering. Good agreement between experiments and the designed theoretical model was found by including specific interactions between added counter-ions and the carboxyl groups of the fibrils in the model. Thus, the surface charge is both reduced by protonation and by specific interactions. This emphasizes a much larger effect of the counter-ions on the stability then generally thought. Hence, this work significantly improves the understanding of the interfibril interactions in aqueous media. As mentioned above, the fibrils can be physically cross-linked to form a gel. The gelation is an instant process, occurring at pH or salt levels causing the interfibril repulsion to decrease close to zero. If a well dispersed stationary dispersion is gelled, the homogenous and random distribution of the fibrils is preserved in the gel. These gels can be used as templates to produce composites by allowing monomers or polymers to enter the network by diffusion. In an effort to mimic processes occurring in the tree, producing materials with fibrils aligned in a preferred direction, the ability to form gels with controlled fibril orientation were studied. Such networks were successfully produced by applying strain to the system prior or past gelation. Orientation prior gelation was obtained by subjecting the dispersion to elongational flow and freezing the orientation by “turning off” the electrostatic repulsion. Orienting the fibrils after gelation was achieved by applying shear strain. Due to the physical nature of the crosslinks, rotation in the fibril-fibril joints can occur, enabling the fibrils to align in the shear direction. This alignment significantly increased the stiffness of the gels in the shear direction. / QC 20111205
29

Chemical Modification of NFC: Development of Renewable Barriers for Packaging Applications

Pettersson, Jesper January 2012 (has links)
Globalization and centralization have resulted in prolonged transportation time between producer and consumer, and thus put more demand on the perseveration of a product for longer duration and protect it from oxidation. The presence of oxygen in packages severely foreshortens the storage life as it yield losses of nutrients and allow microbial growth, which can cause changes in smell, taste as well as discoloration. Earlier food and beverage containers were made in inorganic materials e.g. metal and glass, however lately more and more focus have been on synthetic organic materials as these show several advantages, e.g. weight. However, still today most of the commercial packaging materials, organic or inorganic, are not considered to be environmental friendly. Thus, efforts have to be made today in order to invent alternative materials that can make the society of tomorrow more sustainable. Cellulose is the most abundant biopolymer in the world, hence making it desirable to use in “green” packaging applications. Furthermore, cellulose has proven being able to form films with great gas barrier potential under specific conditions. However, cellulose based materials are sensitive to moisture with severely increased oxygen transmission with increased relative humidity as a result; hence it is desired to make cellulose less hygroscopic by chemical modification. First, nanofibrillated cellulose (NFC) with 720 mmol carboxylic groups/g fiber was produced by oxidation of dissolving pulp before homogenization. Thereafter a polymer was synthesized utilizing Initiator A as an initiator at T1 and T2. The polymer synthesized at T1 yielded a polymer with a viscosity average molecular weight of 5770 g/mol.  The polymer was then grafted on the oxidized NFC through a coupling reaction performed in Buffer C using Coupling agent A. The grafting procedure was performed in Buffer C at ambient conditions giving rise to a material composed of 33 wt% synthetic polymer and 67 wt% NFC. The coupling was conducted several times in order to investigate how the final product can be affected by varying reactant feed and dispersion method. Finally, films of NFC and NFC-g-Polymer were manufactured by vacuum filtration from a 0.05 wt% Solvent A dispersion and were evaluated with field emission scanning electron microscopy.
30

Biocomposite with Continuous Spun Cellulose Fibers

Pineda, Rocio Nahir January 2020 (has links)
The subject of this project is to study spun cellulose fibers made by Spinnova Oy inFinland. The fibers are spun using an environmentally friendly spinning process withoutuse of harsh chemicals.The spun filaments and the yarn based on these filaments were characterized and usedas reinforcement in polylactic acid biopolymer (PLA) and in biobased epoxy resin. Acomprehensive mechanical and morphological characterization of the single filamentsand their yarn was conducted. It was found that the single filaments are flat with a largewidth/thickness ratio, they are porous especially on one side and some cellulosemicrofibril orientation is observed on the filament surface. The single filaments are stiffand strong if compared to commercial regenerated cellulose filaments but are difficultto handle as they are very small and extremely light. The yarn showed to have lowermechanical properties but is easier to handle during the process of compositemanufacturing. Unidirectional fiber-reinforced composites were made using theSpinnova-yarn and PLA polymer applying film-stacking processing method. Thecomposite mechanical properties were studied and the results showed that themechanical performance of the PLA was significantly improved. The strength improvedfrom 54 MPa of the neat PLA to 95 MPa and the stiffness from 3.4 to 8.6 GPa withaddition of 22 wt% Spinnova-yarn.The main challenge of the project was handling the single filaments and their yarn todevelop a suitable manufacturing process which allows to exploit the potential of themto obtain a homogeneous fiber “preform” and to achieve good impregnation with the PLA matrix.

Page generated in 0.0717 seconds