Spelling suggestions: "subject:"biocomposites"" "subject:"nanocomposite""
41 |
Matériaux biodégradables à base d'amidon expansé renforcé de fibres naturelles - Application à l'emballage alimentaireStanojlovic Davidovic, Andréa 14 December 2006 (has links) (PDF)
Dans un contexte où le développement durable apparaît comme une priorité majeure, la mise au point de matériaux biodégradables, représente un enjeu majeur qui offre une alternative aux polymères synthétiques. L'objectif de cette thèse est donc de développer un système multicouche biodégradable susceptible de se substituer au polystyrène expansé dans le domaine de la barquette alimentaire. Ce multicouche est constitué de deux films de polycaprolactone en tant que couches externes et d'une âme en amidon de pomme de terre. Cet amidon a été expansé et renforcé par des fibres naturelles (chanvre, cellulose, paille de blé, linter de coton). L'influence d'agents de nucléation dans les formulations a été analysée. Après optimisation des conditions de mise en oeuvre par extrusion et laminage-couchage, la tenue mécanique du produit, ainsi que sa résistance à l'eau, sa microstructure (taille des cellules, épaisseur des parois) et sa biodégradabilité ont été déterminées et optimisées
|
42 |
La modification de la chimie de surface des nanofibrilles de cellulose pour une application dans les vitrages de sécurité et/ou pare-ballesLassoued, Mariem January 2020 (has links) (PDF)
No description available.
|
43 |
Vision vs. produktion : - En designers frustrerande arbetsprocess från start till mål / Vision vs. production : - A designer's frustrating work process from start to finishFältström, Sebastian January 2023 (has links)
Additiv tillverkning eller 3D-utskrift som det även kallas är en produktionsprocess som kan erbjuda snabba prototyper med spännande och komplexa geometriska former. Under de senaste åren har expansionen för additiv tillverkning verkligen tagit fart och tekniken, kombinerat med nya progressiva material, blir alltmer efterfrågat. Jag har i detta examensarbete, tillsammans med Akademiska Hus och Stora Enso, undersökt potentiella produktionsmetoder för additiv tillverkning av storskaliga produkter i biokomposit. Det här samarbetet startade i mars 2022 och produkten som jag framställas är en ljudstol som jag valt att kalla Bönan. Den första versionen vi arbetade med visade sig vara för svår att producera med den additiva tekniken. Det är här mitt examensarbete tagit vid. I arbetet har jag undersökt hur mycket avkall jag som designer behöver göra för att produkten ska kunna produceras mer än bara en gång samt vilka moment som är essentiella för att ta en produkt från vision till produktion. Under examensarbetet har jag även fördjupat mina kunskaper inom additiv tillverkning genom att själv skriva ut småskaliga prototyper för att få en större inblick i produktionsprocessen och vilka tekniska aspekter som är fundamentala för att nå ett önskvärt slutresultat. Jag har även parallellt med detta haft kontinuerlig kontakt med Stora Enso och Akademiska hus och överlagt kring kommande steg i processen. Förhoppningsvis har mina fördjupade kunskaper inom additiv tillverkning och en mer holistiskt fokuserad utgångspunkt kunnat påverka verkshöjden på slutprodukten.
|
44 |
Pleurotus ostreatus production on Cannabis sativa, L. (Industrial Hemp) Residues for Edible Mushrooms and Mycelium-based CompositesReiss II, Matthew William 14 August 2022 (has links)
The current anthropogenic practices of generating single-use waste streams in agriculture, forestry and manufacturing industries have created a host of environmental health problems. Humankind's reliance on non-renewable resources for the production of food and materials, and its current approach to product design and development, are clearly unsustainable. One mitigation strategy to reducing industrial and municipal solid waste, as well as environmental pollution, can be found in using white rot fungi to valorize our planet's most abundant and regenerative natural resource – plant biomass containing lignocellulose. From residual dry plant matter, white rot fungi can be employed through a solid-state fermentation process to produce a variety of edible, nutrient-dense saprotrophic mushrooms in addition to biologically augmented composite materials. Under the framework of the circular economy, agricultural and forestry byproducts with fibers containing lignin, cellulose and hemicellulose may be used as a feedstock for the production of both food and biomaterials – keeping plant biomass revolving through multiple cycles of use and reuse for a variety of product outputs that are biodegradable and help to sequester carbon. In this study, mushrooms were grown on a variety of lignocellulosic substrates derived from agricultural and forestry residues. Hemp-based substrates performed the best of the feedstocks with regard to mushroom yield and mycelium colonization time. Additionally, a number of mycelium composite products were designed and fabricated in this study using residual lignocellulosic plant biomass, including: insulation bricks, acoustical panels, and biodegradable planter pots. In particular, spent mushroom substrate containing hemp hurd and other agricultural and forestry residues showed significant potential in upcycling lignocellulosic plant biomass for the production of both mushrooms and mycelium materials. Regenerative design practices demonstrated how food and materials can be generated from the same lignocellulosic feedstock; therefore, reducing waste, circulating products and materials, and ultimately regenerating nature. / Master of Science / Environmental pollution and natural resource scarcity have encouraged exploration into using biologically based materials for the production of more ecologically friendly products. By valorizing the Earth's most abundant, renewable natural resource for the production of food and materials– dry plant matter containing lignocellulose – waste is reduced, carbon is stored, and materials can remain upcycled through multiple generations of production. Lignocellulosic residues – natural fibers containing the biopolymers lignin, cellulose and hemicellulose – have recently been given increased attention due to their ability to be aggregated and grown into low-cost, lightweight materials using white rot fungi. Mushroom farming has historically valorized lignocellulosic agricultural and forestry residues to grow an edible, nutrient-dense food crop. This thesis investigates the potential of various agricultural and forestry residues for the production of mushrooms and mycelium-based lignocellulosic composites. Furthermore, this study explores the utilization of spent mushroom substrate for the production of several mycelium-based composite products within the framework of the circular economy. Hemp-based substrates demonstrated significant potential in both mushroom production and mycelium composite fabrication, outperforming other agricultural residues in this study with regard to mushroom yield and speed of mycelial growth of Pleurotus ostreatus. More research into the tunable lignocellulosic substrate compositions will continue to help advance mushroom production and mycelium-based composite generation as environmentally friendly materials and production practices continue to gain interest.
|
45 |
Biocompósitos a partir de celulose de linter: filmes de acetatos de celulose/celulose e quitosana/celulose / Biocomposites from linters cellulose: cellulose acetate/cellulose and chitosan/cellulose filmsMorgado, Daniella Lury 11 December 2009 (has links)
O presente trabalho visou o estudo da modificação química da celulose de linter (obtida de fonte de rápido crescimento e considerada a celulose de maior pureza isolada de fontes vegetais) através da sua derivatização em meio homogêneo, buscando-se a obtenção de materiais com características bem definidas e via um método que apresente boa reprodutibilidade. Dentre os derivados de celulose, os acetatos têm importância industrial significativa. No presente trabalho, acetatos de celulose obtidos no sistema de solvente cloreto de lítio/dimetilacetamida (LiCl/DMAc), com diferentes graus de substituição (GS) foram caracterizados através de 1H NMR, espectroscopia na região do infravermelho, viscosimetria e análises térmicas (DSC e TG). Através de métodos quantitativos aplicados às curvas termogravimétricas pode-se obter parâmetros cinéticos relacionados à decomposição térmica como a energia de ativação (Ea). Os resultados para os acetatos mostraram que conforme o GS aumenta, aumenta o grau de substituição de C2 e C3, e observa-se também aumenta Ea. Acetatos de celulose com diferentes GS foram utilizados para a obtenção de filmes a partir do mesmo sistema de solvente. Visando à obtenção de biocompósitos, filmes de acetatos de celulose com diferentes porcentagens de celulose foram preparados. Nestes filmes, os acetatos são considerados como matriz e a celulose como reforço, se tendo como pressuposto que as cadeias de celulose formarão agregados em solução, os quais serão mantidos nos filmes, atuando então como reforço. Este pressuposto é baseado em resultados de trabalhos anteriores, assim como estudos reológicos feitos no presente trabalho, que mostram que as cadeias de celulose se agregam, mesmo a baixas concentrações. Estes materiais foram caracterizados via difração de raios X, análises térmicas (DSC, TG e DMTA), cromatografia de exclusão por tamanho (SEC), microscopia eletrônica de varredura (MEV), solvatocromismo, dentre outras. A eliminação dos solventes após a obtenção dos filmes é um fator importante a ser considerado, e os resultados mostraram que o processo escolhido não leva a presença residual dos solventes utilizados. As imagens de MEV indicaram que fibras de celulose nos filmes de biocompósitos no geral não são visíveis em escala microscópica. Este resultado é promissor, pois sugere que as fibras de celulose podem estar presentes em escala nanométrica, já que para alguns filmes a ação como reforço foi observada, através da melhora em algumas propriedades. Ainda, a rugosidade dos filmes de biocompósitos foi alterada com a presença de celulose conforme mostram os resultados de AFM. Os resultados de DMTA indicaram que uma baixa porcentagem de celulose (5% de celulose) no filme de acetato de celulose com GS 0,8, foi suficiente para a ação como reforço ser observada, sugerindo que cadeias de celulose interagiram preferencialmente entre si, gerando estruturas supramoleculares de cadeias agregadas quando ainda no meio solvente (LiCl/DMAc), as quais permaneceram na preparação dos filmes. No entanto, para o filme obtido a partir de um GS maior (GS 1,5), o efeito de reforço da celulose nos filmes de biocompósitos ocorre apenas para a maior proporção de celulose (15% de celulose). Os resultados de ensaio à tração mostraram que dependendo da aplicação, ou seja, a necessidade de filmes mais resistentes à tração e maior rigidez, estes podem ser empregados. Adicionalmente, filmes de celulose e quitosana foram preparados no sistema de solvente NaOHaq./tiouréia. Nestes filmes, considera-se a quitosana como matriz e a celulose como agente de reforço. Acredita-se que as cadeias de celulose prefiram interagir entre si, gerando \"domínios\" de cadeias de celulose. Por este motivo, o termo biocompósito foi empregado também para estes filmes. Estes materiais foram caracterizados via difração de raios X, análises térmicas (DSC, TG e DMTA), biodegradação, sorção de umidade, microscopia de força atômica (AFM), dentre outras. Os resultados de difração de raios X mostram que o sistema de solvente não altera significativamente a cristalinidade dos filmes, comparativamente aos materiais de partida. As análises térmicas empregadas (TG e DSC) mostraram que a estabilidade térmica é alterada devido a presença dos dois polissacarídeos nos filmes de biocompósitos. O estudo de biodegradação dos filmes de biocompósitos em solo simulado mostrou que a velocidade de biodegradação está relacionada à proporção das regiões não cristalinas, que são mais acessíveis à água e aos microrganismos, isto é, quanto maior o valor de índice de cristalinidade, menor será a velocidade de biodegradação. Importante ressaltar que o comportamento destes filmes em relação à biodegradação está também relacionado com a morfologia apresentada pelos filmes. A análise de AFM mostrou que o aumento da proporção de quitosana nos filmes de biocompósitos leva a maiores valores de rugosidade. Os resultados obtidos para os filmes de quitosana, celulose e biocompósitos (quitosana/celulose), assim como para os filmes de acetato de celulose, celulose e biocompósitos (acetato de celulose/celulose) se mostraram promissores. / This work was aimed at studying the chemical modification of linters cellulose extracted from a source of rapid growth and considered the most pure cellulose from vegetable sources. Derivatization was carried out in a homogeneous medium to obtain materials with well-defined properties via a reproducible method. Here cellulose acetate was obtained with various degrees of substitution (DS) using the lithium chloride/dimethylacetamide system (LiCl/DMAc), being characterized with 1H NMR, infrared spectroscopy, viscometry measurements and thermal analysis (DSC and TG). The thermogravimetric curves were analyzed quantitatively, which allowed the determination of kinetics parameters for the thermal decomposition, including the activation energy (Ea). Ea and the substitution at C2 and C3 increased with increasing DS. Cellulose acetates with distinct DS were obtained in the form of films using the solvents mentioned above. Furthermore, biocomposite films were prepared with different contents of cellulose, in which the acetates were considered as matrices and the cellulose was the loading material. It is assumed that the cellulose chains form aggregates in solution, which will be preserved in the films, thus acting as reinforcement. This hypothesis was based on previous work and confirmed here with rheological data. We show that the cellulose chains are aggregated even at low concentrations. These films were characterized using X-ray diffraction, thermal analysis (DSC, TG and DMTA), size exclusion chromatography (SEC), atomic force microscopy (AFM) and scanning electron microscopy. No residual solvent was present after film preparation. The SEM images indicated that the cellulose fibers in the biocomposite films are not visible at the microscopy scale, thus suggesting the presence of cellulose nanofibers. This is promising due to the possible enhancement in the mechanical properties, which was actually observed with a threshold percentage of only 5% of cellulose with DS 0.8. The cellulose chains apparently interacted among each other, generating supramolecular structures with aggregated chains in the LiCl/DMAc solvent. The film roughness investigated with AFM was altered by the presence of cellulose in the composite film. For the film obtained with cellulose acetate with GS 1.5, the effects from cellulose as reinforcement were only observed with higher content of cellulose (15%). According to the stress-strain tests, the films may be employed in applications requiring rigid, mechanically resistant materials. Cellulose/chitosan films were also prepared using NaOHaq./thiourea as solvent, in which chitosan served as the matrix. As in the biocomposite with cellulose acetate, the cellulose chains formed domains. The films were characterized using X-ray diffraction, thermal analysis (DSC, TG and DMTA), biodegradation tests, humidity sorption isotherms and AFM. The solvent did not affect the crystallinity of the sample, according to the XRD data. Through thermal analysis, it was inferred that the thermal stability was affected by the presence of chitosan in the biocomposite films. The study of biocomposite film degradation in a simulated soil showed that the rate of biodegradation is associated with the crystalline regions of the sample, which are more accessible to the water and the microorganisms. In other words, the higher the crystallinity the lower the biodegradation rate is. It is worth mentioning that the biodegradability also depends on the film morphology. The analysis of AFM images indicated that the film roughness increased with the content of chitosan. The results obtained with the films made with chitosan, cellulose and biocomposites (chitosan/cellulose), as well as for the films from cellulose acetate and cellulose acetate/cellulose, are promising.
|
46 |
Soy-Polypropylene Biocomposites for Automotive ApplicationsGuettler, Barbara Elisabeth 15 May 2009 (has links)
For the automotive sector, plastics play the most important role when designing interior and exterior parts for cars. Currently, most parts are made from petroleum-based plastics but alternatives are needed to replace environmentally harmful materials while providing the appropriate mechanical performance and preferably reduce the cost for the final product.
The objective of this work was to explore the use of soy flakes as natural filler in a composite with polypropylene and to investigate the mechanical properties, water absorption and thermal behaviour. For a better understanding of the filler, the soy flakes were characterized extensively with analytical and microscopic methods.
Two types of soy fillers were investigated, soy flakes, provided by Bunge Inc., with a 48 wt-% protein content and an industrial soy based filler with 44 wt-% protein content and provided by Ford.
The size of the soy flakes after milling was mainly between 50 and 200 µm and below 50 µm for the industrial filler. The aspect ratio for all filler was below 5. The soy flakes were used after milling and subjected to two pre-treatment methods: (1) one hour in a 50 °C pH 9 water solution in a 1 : 9 solid-liquid ratio; (2) one hour in a 50 °C pH 9 1M NaCl solution in a 1 : 9 solid-liquid ratio. A control filler, without pre-treatment was considered. The soy flakes were also compared to an industrial soy based filler provided by Ford (soy flour (Ford)). The thermogravimetric analysis showed an onset of degradation at 170 °C for the treated filler (ISH2O and ISNaCl) and 160 °C for the untreated filler.
The biocomposites formulation consisted of 30 wt-% filler, and polypropylene with/without 0.35 wt-% anti-oxidant Irganox 1010 and with/without the addition of MA-PP as coupling agent. All biocomposites were compounded in a mini-extruder, pressed into bars by injection moulding and tested subsequently.
The mechanical properties of the biocomposites are promising. An increase of the E-modulus was observed when compared to pure polypropylene. The addition of MA-PP as coupling agent increased the yield strength of the biocomposites. When pure polypropylene and the biocomposites were compared no difference could be seen for their yield strength.
The thermal behaviour deduced from differential scanning calorimetry, revealed a similar behaviour for the biocomposites and the pure polypropylene. Only the samples treated in the presence of NaCl and without a coupling agent, appear to have a slightly higher degree of crystallinity. The melt flow index was slightly increased for the biocomposites containing soy flakes pre-treated with NaCl and decreased for biocomposites containing the soy flour.
The water absorption behaviour of the biocomposites was quite similar at the beginning with a slightly lower absorption for the materials with coupling agent. After three months, all samples except the ones treated with water showed a weight loss that can be due to the leaching of the water soluble components in the untreated filler and the NaCl treated filler.
In conclusion, soy flakes represent an attractive filler when used in a polypropylene matrix if an aqueous alkaline pre-treatment is performed. The aqueous alkaline extraction also leads to the recovery of the proteins that can be used in food products while the remaining insoluble material is used for the biocomposites, avoiding the competition with the use of soy for food products...
|
47 |
Soy-Polypropylene Biocomposites for Automotive ApplicationsGuettler, Barbara Elisabeth 15 May 2009 (has links)
For the automotive sector, plastics play the most important role when designing interior and exterior parts for cars. Currently, most parts are made from petroleum-based plastics but alternatives are needed to replace environmentally harmful materials while providing the appropriate mechanical performance and preferably reduce the cost for the final product.
The objective of this work was to explore the use of soy flakes as natural filler in a composite with polypropylene and to investigate the mechanical properties, water absorption and thermal behaviour. For a better understanding of the filler, the soy flakes were characterized extensively with analytical and microscopic methods.
Two types of soy fillers were investigated, soy flakes, provided by Bunge Inc., with a 48 wt-% protein content and an industrial soy based filler with 44 wt-% protein content and provided by Ford.
The size of the soy flakes after milling was mainly between 50 and 200 µm and below 50 µm for the industrial filler. The aspect ratio for all filler was below 5. The soy flakes were used after milling and subjected to two pre-treatment methods: (1) one hour in a 50 °C pH 9 water solution in a 1 : 9 solid-liquid ratio; (2) one hour in a 50 °C pH 9 1M NaCl solution in a 1 : 9 solid-liquid ratio. A control filler, without pre-treatment was considered. The soy flakes were also compared to an industrial soy based filler provided by Ford (soy flour (Ford)). The thermogravimetric analysis showed an onset of degradation at 170 °C for the treated filler (ISH2O and ISNaCl) and 160 °C for the untreated filler.
The biocomposites formulation consisted of 30 wt-% filler, and polypropylene with/without 0.35 wt-% anti-oxidant Irganox 1010 and with/without the addition of MA-PP as coupling agent. All biocomposites were compounded in a mini-extruder, pressed into bars by injection moulding and tested subsequently.
The mechanical properties of the biocomposites are promising. An increase of the E-modulus was observed when compared to pure polypropylene. The addition of MA-PP as coupling agent increased the yield strength of the biocomposites. When pure polypropylene and the biocomposites were compared no difference could be seen for their yield strength.
The thermal behaviour deduced from differential scanning calorimetry, revealed a similar behaviour for the biocomposites and the pure polypropylene. Only the samples treated in the presence of NaCl and without a coupling agent, appear to have a slightly higher degree of crystallinity. The melt flow index was slightly increased for the biocomposites containing soy flakes pre-treated with NaCl and decreased for biocomposites containing the soy flour.
The water absorption behaviour of the biocomposites was quite similar at the beginning with a slightly lower absorption for the materials with coupling agent. After three months, all samples except the ones treated with water showed a weight loss that can be due to the leaching of the water soluble components in the untreated filler and the NaCl treated filler.
In conclusion, soy flakes represent an attractive filler when used in a polypropylene matrix if an aqueous alkaline pre-treatment is performed. The aqueous alkaline extraction also leads to the recovery of the proteins that can be used in food products while the remaining insoluble material is used for the biocomposites, avoiding the competition with the use of soy for food products...
|
48 |
Magnetické biokompozitní materiály pro odstranění významných xenobiotik z vodních systémů / Magnetic biocomposite materials for removal of significant xenobiotics from water systemsBALDÍKOVÁ, Eva January 2017 (has links)
The theoretical part of this doctoral thesis provides a comprehensive overview on the topic of preparation and subsequent utilization of magnetic derivatives of biological materials for xenobiotic separation from water. Main attention is paid to magnetic modification of waste materials and by-products originating from agricultural and food industry, which represent widely available and low-cost materials, and also to magnetic modification of microbial cells. In addition to the description of magnetic particle preparation and individual developed techniques of magnetic modification, a brief characterization of selected pollutants and a detailed table overview on utilization of magnetically responsive biomaterials for biosorption of organic dyes, heavy metals, pharmaceutical and personal care products together with ubiquitous industrial endocrine disruptors and also of crude oil derivatives is presented. Experimental part of this thesis is focused on the preparation and optimization of new types of magnetic materials. Emphasis is placed on the employment of simple, fast and simultaneously low-cost magnetic modification techniques (e.g., postmagnetization using microwave-synthesized magnetic iron oxides or one-step modification by magnetic fluids). Selected plant materials (barley and rye straw) were chemically modified to significantly (up to five-times) increase the maximum adsorption capacities for tested dyes. All prepared biomaterials exhibited a great magnetic response and simultaneously relatively high adsorption capacity for selected xenobiotics under experimental conditions used. Factors substantially affecting adsorption process, such as pH, initial concentration, incubation time or temperature were also studied. Adsorption equilibrium data were assessed using Langmuir, Freundlich or Sips isotherm models. Experimental data from time dependence study were analyzed by chosen kinetic models, namely the pseudo-first-order and pseudo-second-order ones and by intraparticle diffusion model. Thermodynamic parameters (Gibbs free energy, enthalpy and entropy) describing the nature of adsorption were also included in study.
|
49 |
Ett nytt användningsområde för materialet OrganoComp® : genom en materialdriven designprocess / A New Application For OrganoComp® : through a material-driven design processBerg, Jonatan January 2017 (has links)
Syftet med detta projekt är att med hjälp av en materialinriktad designprocess skapa en produkt av biokompositmaterialet OrganoComp® för att demonstrera dess styrkor och möjligheter. Arbetet kommer att följa metoden ”Material Driven Design (MDD)”, vilket betyder att processen kommer att börja med en noggrann studie av materialet – dels tekniskt och ur ett användarcentrerat perspektiv, men även jämförelsemässigt mot andra material. Insikterna från dessa studier kommer sedan trattas ner och sammanfattas i en ”designintention” som ska sätta målet för designarbetet. Slutligen kommer ett antal koncept som uppfyller designintentionen arbetas fram, varav ett koncept – ett litet, ihopvikbart och nedbrytbart paraply/regnskydd kommer att väljas ut som det slutgiltiga. Paraplyet visar på materialets vattenavvisande egenskaper, i kombination med hårdhet och vikbarhet. Målet med projektet är att skapa en demonstrator som även har potential att bli en användbar produkt i framtiden, och samtidigt ge företaget OrganoClick nya insikter och flera förslag på nya användningsområden för sitt material.
|
50 |
Biocompósitos a partir de celulose de linter: filmes de acetatos de celulose/celulose e quitosana/celulose / Biocomposites from linters cellulose: cellulose acetate/cellulose and chitosan/cellulose filmsDaniella Lury Morgado 11 December 2009 (has links)
O presente trabalho visou o estudo da modificação química da celulose de linter (obtida de fonte de rápido crescimento e considerada a celulose de maior pureza isolada de fontes vegetais) através da sua derivatização em meio homogêneo, buscando-se a obtenção de materiais com características bem definidas e via um método que apresente boa reprodutibilidade. Dentre os derivados de celulose, os acetatos têm importância industrial significativa. No presente trabalho, acetatos de celulose obtidos no sistema de solvente cloreto de lítio/dimetilacetamida (LiCl/DMAc), com diferentes graus de substituição (GS) foram caracterizados através de 1H NMR, espectroscopia na região do infravermelho, viscosimetria e análises térmicas (DSC e TG). Através de métodos quantitativos aplicados às curvas termogravimétricas pode-se obter parâmetros cinéticos relacionados à decomposição térmica como a energia de ativação (Ea). Os resultados para os acetatos mostraram que conforme o GS aumenta, aumenta o grau de substituição de C2 e C3, e observa-se também aumenta Ea. Acetatos de celulose com diferentes GS foram utilizados para a obtenção de filmes a partir do mesmo sistema de solvente. Visando à obtenção de biocompósitos, filmes de acetatos de celulose com diferentes porcentagens de celulose foram preparados. Nestes filmes, os acetatos são considerados como matriz e a celulose como reforço, se tendo como pressuposto que as cadeias de celulose formarão agregados em solução, os quais serão mantidos nos filmes, atuando então como reforço. Este pressuposto é baseado em resultados de trabalhos anteriores, assim como estudos reológicos feitos no presente trabalho, que mostram que as cadeias de celulose se agregam, mesmo a baixas concentrações. Estes materiais foram caracterizados via difração de raios X, análises térmicas (DSC, TG e DMTA), cromatografia de exclusão por tamanho (SEC), microscopia eletrônica de varredura (MEV), solvatocromismo, dentre outras. A eliminação dos solventes após a obtenção dos filmes é um fator importante a ser considerado, e os resultados mostraram que o processo escolhido não leva a presença residual dos solventes utilizados. As imagens de MEV indicaram que fibras de celulose nos filmes de biocompósitos no geral não são visíveis em escala microscópica. Este resultado é promissor, pois sugere que as fibras de celulose podem estar presentes em escala nanométrica, já que para alguns filmes a ação como reforço foi observada, através da melhora em algumas propriedades. Ainda, a rugosidade dos filmes de biocompósitos foi alterada com a presença de celulose conforme mostram os resultados de AFM. Os resultados de DMTA indicaram que uma baixa porcentagem de celulose (5% de celulose) no filme de acetato de celulose com GS 0,8, foi suficiente para a ação como reforço ser observada, sugerindo que cadeias de celulose interagiram preferencialmente entre si, gerando estruturas supramoleculares de cadeias agregadas quando ainda no meio solvente (LiCl/DMAc), as quais permaneceram na preparação dos filmes. No entanto, para o filme obtido a partir de um GS maior (GS 1,5), o efeito de reforço da celulose nos filmes de biocompósitos ocorre apenas para a maior proporção de celulose (15% de celulose). Os resultados de ensaio à tração mostraram que dependendo da aplicação, ou seja, a necessidade de filmes mais resistentes à tração e maior rigidez, estes podem ser empregados. Adicionalmente, filmes de celulose e quitosana foram preparados no sistema de solvente NaOHaq./tiouréia. Nestes filmes, considera-se a quitosana como matriz e a celulose como agente de reforço. Acredita-se que as cadeias de celulose prefiram interagir entre si, gerando \"domínios\" de cadeias de celulose. Por este motivo, o termo biocompósito foi empregado também para estes filmes. Estes materiais foram caracterizados via difração de raios X, análises térmicas (DSC, TG e DMTA), biodegradação, sorção de umidade, microscopia de força atômica (AFM), dentre outras. Os resultados de difração de raios X mostram que o sistema de solvente não altera significativamente a cristalinidade dos filmes, comparativamente aos materiais de partida. As análises térmicas empregadas (TG e DSC) mostraram que a estabilidade térmica é alterada devido a presença dos dois polissacarídeos nos filmes de biocompósitos. O estudo de biodegradação dos filmes de biocompósitos em solo simulado mostrou que a velocidade de biodegradação está relacionada à proporção das regiões não cristalinas, que são mais acessíveis à água e aos microrganismos, isto é, quanto maior o valor de índice de cristalinidade, menor será a velocidade de biodegradação. Importante ressaltar que o comportamento destes filmes em relação à biodegradação está também relacionado com a morfologia apresentada pelos filmes. A análise de AFM mostrou que o aumento da proporção de quitosana nos filmes de biocompósitos leva a maiores valores de rugosidade. Os resultados obtidos para os filmes de quitosana, celulose e biocompósitos (quitosana/celulose), assim como para os filmes de acetato de celulose, celulose e biocompósitos (acetato de celulose/celulose) se mostraram promissores. / This work was aimed at studying the chemical modification of linters cellulose extracted from a source of rapid growth and considered the most pure cellulose from vegetable sources. Derivatization was carried out in a homogeneous medium to obtain materials with well-defined properties via a reproducible method. Here cellulose acetate was obtained with various degrees of substitution (DS) using the lithium chloride/dimethylacetamide system (LiCl/DMAc), being characterized with 1H NMR, infrared spectroscopy, viscometry measurements and thermal analysis (DSC and TG). The thermogravimetric curves were analyzed quantitatively, which allowed the determination of kinetics parameters for the thermal decomposition, including the activation energy (Ea). Ea and the substitution at C2 and C3 increased with increasing DS. Cellulose acetates with distinct DS were obtained in the form of films using the solvents mentioned above. Furthermore, biocomposite films were prepared with different contents of cellulose, in which the acetates were considered as matrices and the cellulose was the loading material. It is assumed that the cellulose chains form aggregates in solution, which will be preserved in the films, thus acting as reinforcement. This hypothesis was based on previous work and confirmed here with rheological data. We show that the cellulose chains are aggregated even at low concentrations. These films were characterized using X-ray diffraction, thermal analysis (DSC, TG and DMTA), size exclusion chromatography (SEC), atomic force microscopy (AFM) and scanning electron microscopy. No residual solvent was present after film preparation. The SEM images indicated that the cellulose fibers in the biocomposite films are not visible at the microscopy scale, thus suggesting the presence of cellulose nanofibers. This is promising due to the possible enhancement in the mechanical properties, which was actually observed with a threshold percentage of only 5% of cellulose with DS 0.8. The cellulose chains apparently interacted among each other, generating supramolecular structures with aggregated chains in the LiCl/DMAc solvent. The film roughness investigated with AFM was altered by the presence of cellulose in the composite film. For the film obtained with cellulose acetate with GS 1.5, the effects from cellulose as reinforcement were only observed with higher content of cellulose (15%). According to the stress-strain tests, the films may be employed in applications requiring rigid, mechanically resistant materials. Cellulose/chitosan films were also prepared using NaOHaq./thiourea as solvent, in which chitosan served as the matrix. As in the biocomposite with cellulose acetate, the cellulose chains formed domains. The films were characterized using X-ray diffraction, thermal analysis (DSC, TG and DMTA), biodegradation tests, humidity sorption isotherms and AFM. The solvent did not affect the crystallinity of the sample, according to the XRD data. Through thermal analysis, it was inferred that the thermal stability was affected by the presence of chitosan in the biocomposite films. The study of biocomposite film degradation in a simulated soil showed that the rate of biodegradation is associated with the crystalline regions of the sample, which are more accessible to the water and the microorganisms. In other words, the higher the crystallinity the lower the biodegradation rate is. It is worth mentioning that the biodegradability also depends on the film morphology. The analysis of AFM images indicated that the film roughness increased with the content of chitosan. The results obtained with the films made with chitosan, cellulose and biocomposites (chitosan/cellulose), as well as for the films from cellulose acetate and cellulose acetate/cellulose, are promising.
|
Page generated in 0.0403 seconds