• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 204
  • 175
  • 39
  • 24
  • 23
  • 16
  • 12
  • 9
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 576
  • 128
  • 83
  • 82
  • 78
  • 63
  • 59
  • 59
  • 53
  • 50
  • 47
  • 46
  • 46
  • 45
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Controlled Trans-lymphatic Delivery of Chemotherapy for the Treatment of Lymphatic Metastasis in Lung Cancer

Liu, Jiang 28 July 2008 (has links)
Lymph node metastasis is a critical prognostic factor for lung cancer. Effective therapy to control lymphatic metastasis may improve survival. The work described in this thesis focuses on the development of a microparticulate lymphatic targeting system, which can be applied as an adjuvant therapy in the control of lymphatic metastasis in lung cancer. The study shows that intrapleural administered colloidal particulates are predominantly taken up by regional lymphatic tissue in rat models including healthy rats, rats bearing orthotopic lung tumours and rats following pneumonectomy. The effect of particle size on lymphatic particle distribution was examined by intrapleural administration of 111In-aminopolystyrene beads. Approximately 2 µm is a suitable size for intrapleural lymphatic targeting. Biodegradable polylactide-co-glycolide (PLGA) microparticles containing the anticancer agent paclitaxel (PTX) were subsequently formulated in the desired size by spray drying. PLGA-PTX microspheres were incorporated into a biodegradable and biocompatible gelatin sponge matrix to form an implantable lymphatic targeted drug delivery system. The system was characterized in vitro and its lymphatic targeting ability was examined in vivo. Fluorescence labeled microspheres embedded within the sponge were selectively taken up by regional lymphatics as the sponge matrix disintegrated following intrapleural implantation. A pharmacokinetic study showed that the total PTX exposure in lymphatic tissue was dramatically higher than that achieved through intravenous administration. The peak plasma drug concentration, which governs systemic toxicity, was significantly reduced. The low but persistent detection of plasma PTX indicates that PTX was control released from the system after intrapleural implantation. In a therapeutic efficacy study performed in the H460 orthotopic lung cancer model, gelatin sponges containing PLGA-PTX microspheres were placed in the pleural cavity as an adjuvant treatment after surgical resection of the primary lung tumour. Trans-lymphatic chemotherapy resulted in a significantly lower incidence of lymphatic tumour recurrence (20%) compared to no treatment and placebo control animals (100%). PLGA-PTX microspheres were seen in regional lymphatic tissue over 4 weeks after the sponge placement. It is concluded that the trans-lymphatic targeting drug delivery system described in this thesis may improve the control of lymphatic metastasis in lung cancer.
342

Controlled Trans-lymphatic Delivery of Chemotherapy for the Treatment of Lymphatic Metastasis in Lung Cancer

Liu, Jiang 28 July 2008 (has links)
Lymph node metastasis is a critical prognostic factor for lung cancer. Effective therapy to control lymphatic metastasis may improve survival. The work described in this thesis focuses on the development of a microparticulate lymphatic targeting system, which can be applied as an adjuvant therapy in the control of lymphatic metastasis in lung cancer. The study shows that intrapleural administered colloidal particulates are predominantly taken up by regional lymphatic tissue in rat models including healthy rats, rats bearing orthotopic lung tumours and rats following pneumonectomy. The effect of particle size on lymphatic particle distribution was examined by intrapleural administration of 111In-aminopolystyrene beads. Approximately 2 µm is a suitable size for intrapleural lymphatic targeting. Biodegradable polylactide-co-glycolide (PLGA) microparticles containing the anticancer agent paclitaxel (PTX) were subsequently formulated in the desired size by spray drying. PLGA-PTX microspheres were incorporated into a biodegradable and biocompatible gelatin sponge matrix to form an implantable lymphatic targeted drug delivery system. The system was characterized in vitro and its lymphatic targeting ability was examined in vivo. Fluorescence labeled microspheres embedded within the sponge were selectively taken up by regional lymphatics as the sponge matrix disintegrated following intrapleural implantation. A pharmacokinetic study showed that the total PTX exposure in lymphatic tissue was dramatically higher than that achieved through intravenous administration. The peak plasma drug concentration, which governs systemic toxicity, was significantly reduced. The low but persistent detection of plasma PTX indicates that PTX was control released from the system after intrapleural implantation. In a therapeutic efficacy study performed in the H460 orthotopic lung cancer model, gelatin sponges containing PLGA-PTX microspheres were placed in the pleural cavity as an adjuvant treatment after surgical resection of the primary lung tumour. Trans-lymphatic chemotherapy resulted in a significantly lower incidence of lymphatic tumour recurrence (20%) compared to no treatment and placebo control animals (100%). PLGA-PTX microspheres were seen in regional lymphatic tissue over 4 weeks after the sponge placement. It is concluded that the trans-lymphatic targeting drug delivery system described in this thesis may improve the control of lymphatic metastasis in lung cancer.
343

Silica-Supported Organic Catalysts For The Synthesis Of Biodegradable Polymers

Wilson, Benn Charles 06 December 2004 (has links)
Aliphatic polyesters such as polycaprolactone and polylactide have received more attention in recent years for their use in biomedical applications because of their biodegradable nature. These polymers are often synthesized using homogeneous metal complexes. Unfortunately, using homogeneous metals as catalysts leads to metal contamination in the product polymer, a result which is highly undesirable in a polymer intended for biomedical use. More recent work has shown that these polymers can be synthesized using homogeneous metal-free complexes. These catatlysts are generally less active than metal catalysts, and although they do not contaminate the polymer with metal residue, they are still difficult to recover and hence recycle for further use. In this work, we attempted to create a metal-free, silica-supported catalyst for use in the synthesis of polycaprolactone or polylactide. Ultimately, n-propylsulfonic acid-functionalized porous and nonporous silica materials are evaluated in the ring-opening polymerization of epsilon-caprolactone. All catalysts allow for the controlled polymerization of the monomer, producing polymers with controlled molecular weights and narrow polydispersities. Polymerization rates are low, with site-time-yields generally one to three orders of magnitude lower than metal-based systems. The catalysts are easily recovered from the polymerization solution after use and are shown to contain significant residual adsorbed polymer. Solvent extraction techniques are useful for removing most of the polymer, although the extracted solids are not effective catalysts in recycle experiments. These new materials represent a green alternative to traditional metal-based catalysts, as they are recoverable and leave no metal residues in the polymer.
344

Matrix Metalloproteinase 9 (MMP-9) and Biodegradable Polymers in the Engineering of a Vascular Construct

Sung, Hak-Joon 19 April 2004 (has links)
The role of matrix metalloproteinase (MMP)-9 and processing conditions of biodegradable polymer scaffolds has been investigated to optimize engineering vascular constructs. For a small diameter vascular construct, uniform 10 mm thickness of highly porous scaffolds were developed using a computer-controlled knife coater and exploiting phase transition properties of salts. The comparative study of fast vs. slow degrading three-dimensional scaffolds using a fast degrading poly D, L-lactic-glycolic acid co-polymer (PLGA) and a slow degrading poly e-caprolactone (PCL) indicated that fast degradation negatively affects cell viability and migration into the scaffold in vitro and in vivo, which is likely due to the fast polymer degradation mediated acidification of the local environment. MMP-9 was crucial for collagen remodeling process by smooth muscle cells (SMC). MMP-9 deficiency dramatically decreased inflammatory cell invasion as well as capillary formation within the scaffolds implanted in vivo. This study reports that the angiogenic response developed within the scaffolds in vivo was related to the presence of inflammatory response. Combinatorial polymer libraries fabricated from blended PLGA and PCL and processed at gradient annealing temperatures were utilized to investigate polymeric interactions with SMC. Surface roughness was also found to correlate with SMC adhesion. SMC aggregation, proliferation, and protein production, were highest in regions that exhibited increased surface roughness, reduced hardness, and decreased crystallinity of the PCL-rich phases. This study revealed a previously unknown processing temperature and blending compositions for two well-known polymers, which optimized SMC interactions.
345

Vancomycin Containing Plla Delivery System For Bone Tissue Biocompatibility And Treatment Of Implant Related Chronic Osteomyelitis

Uysal, Berna 01 September 2009 (has links) (PDF)
Osteomyelitis is an infection of bone or bone marrow, usually caused by pyogenic bacteria. It can cultivate by hematogen way or it can cultivate by the help of local soft tissue infection. Osteomyelitis often requires prolonged antibiotic therapy and surgery. But for therapy / antibiotic must reach to effective dose in the bone. So that / for prevention and treatment of osteomyelitis controlled antibiotic release systems can be used. These systems have been developed to deliver antibiotics directly to infected tissue. As a carrier material / polymers are widely use. Polymer can be biodegradable or non biodegradable. The advantage of biodegradable polymers is / you do not need a second surgery for the removal of the carrier material from the body. In this study / vancomycin loaded PLLA/TCP composites were developed and characterized to treat implant related chronic osteomyelitis in experimental rat osteomyelitis model. Some of the composites were prepared by coating the vancomycin loaded composites with PLLA to observe the difference between the coated and uncoated composites. Also, some composites were developed free from the vancomycin to determine the biocompatibility of the composite for the bone tissue. The coating extended the release of the vancomycin up to 5 weeks and changed the surface morphology of the composites. According to the cell culture studies, vancomycin loaded PLLA/TCP composites promoted cell adhesion, cell proliferation and mineralization so / the composite was biocompatible with bone tissue. Radiological and microbiological evaluations showed that vancomycin loaded and coated vancomycin loaded PLLA/TCP composites inhibited MRSA proliferation and treat implant related chronic osteomyelitis.
346

Design and characterization of materials with microphase-separated surface patterns for screening osteoblast response to adhesion

Wingkono, Gracy A. 21 August 2009 (has links)
A study on application of combinatorial methods (CM) and high-throughput methods (HTM) to biomaterials design, characterization, and screening are reported in this thesis - focusing on screening the effects of biomaterial surface features on adherent bone cell cultures. Polymeric biomaterials were prepared on two-dimensional combinatorial libraries that systematically varied the size and shape of chemically-distinct microstructural patterns - generated from blends of biodegradable polyurethanes and polyesters. Characterization and screening were performed with high-throughput optical and fluorescence microscopy. A unique advance of this work is the application of data mining techniques to identify the controlling structural features that affect cell behavior from among the myriad variety of metrics from the microscope images. The results from this study demonstrated the potentials of CM/HTS to be applied to exploratory studies involving complex systems in life sciences. This study accomplishes the goal to demonstrate the efficient screening and exploration of vast and complex dataset, extracting important and meaningful information to narrow down the future path of study in this field. Further study aimed to tuning cellular responses via signals from surface cues will be necessary to examine the causal relationships beyond the observed correlations shown in this exploratory study. It is recommended for further studies to narrow down the range for surface patterning around each of the three 'activation' ranges found in this study: apoptotic, viable, and one unknown state to be studied further. Different cellular-function staining methods will be necessary to be used in cellular imaging techniques in order to explore this unknown state further.
347

What would be the efficient ways for Switch Pac to increase potential demand and capitalize on green attitudes and behavior in the Swedish market?

Curtolo, Anna, Bruning, Andrea January 2008 (has links)
Date: 6/16/2008 Institution: School of Sustainable Development of Society and Technology, Mälardalen University, Västerås (Sweden) Authors: Brüning, Andrea 830111 Västerås Curtolo,Anna 820517 Västerås Tutor: Tobias Eltebrandt Title: A Study of Switch Pac: what would be the efficient ways for Switch Pac to increase potential demand and capitalize on green attitudes and behavior in the Swedish market? Problem: What would be the efficient ways for Switch Pac to increase potential demand and capitalize on green attitudes and behavior in the Swedish market? Purpose: The aim of our project is to see the potential of Switch Pac’s oxo-biodegradable plastic bags on the Swedish market by capitalize on green attitudes and behaviour. Method: The report is based on primary data collected through questionnaires (end consumer/ B2B customers). For the investigation of Switch Pac’s macro- and microenvironment secondary data was used (books, journals, newspaper and the Internet) Conceptual Framework: The conceptual framework consists of certain models to investigate the following topics: Consumer behavior AIDA-Model STP-Model Switch Pac´s business environment PESTEL Conclusion/ Recommendations: In our conclusion based on our frameworks PESTEL, AIDA and STP we concluded that peoples’ awareness regarding environmental friendly plastic bags are not very high based on our questionnaire. The efficient ways for Switch Pac to increase potential demand is to target the customer in the age range from 20 – 49 years and cooperate with supermarkets and (department) stores. Furthermore, Switch Pac needs to position its products in the consumers mind through create brand awareness by using certain elements of the marketing mix model.
348

The Development of Elastomeric Biodegradable Polyurethane Scaffolds for Cardiac Tissue Engineering

Parrag, Ian 01 September 2010 (has links)
In this work, a new polyurethane (PU) chain extender was developed to incorporate a Glycine-Leucine (Gly-Leu) dipeptide, the cleavage site of several matrix metalloproteinases. PUs were synthesized with either the Gly-Leu-based chain extender (Gly-Leu PU) or a phenylalanine-based chain extender (Phe PU). Both PUs had high molecular weight averages (Mw > 125,000 g/mol) and were phase segregated, semi-crystalline polymers (Tm ~ 42°C) with a low soft segment glass transition temperature (Tg < -50°C). Uniaxial tensile testing of PU films revealed that the polymers could withstand high ultimate tensile strengths (~ 8-13 MPa) and were flexible with breaking strains of ~ 870-910% but the two PUs exhibited a significant difference in mechanical properties. The Phe and Gly-Leu PUs were electrospun into porous scaffolds for degradation and cell-based studies. Fibrous Phe and Gly-Leu PU scaffolds were formed with randomly organized fibers and an average fiber diameter of approximately 3.6 µm. In addition, the Phe PU was electrospun into scaffolds of varying architecture to investigate how fiber alignment affects the orientation response of cardiac cells. To achieve this, the Phe PU was electrospun into aligned and unaligned scaffolds and the physical, thermal, and mechanical properties of the scaffolds were investigated. The degradation of the Phe and Gly-Leu PU scaffolds was investigated in the presence of active MMP-1, active MMP-9, and a buffer solution over 28 days to test MMP-mediated and passive hydrolysis of the PUs. Mass loss and structural assessment suggested that neither PU experienced significant hydrolysis to observe degradation over the course of the experiment. In cell-based studies, Phe and Gly-Leu PU scaffolds successfully supported a high density of viable and adherent mouse embryonic fibroblasts (MEFs) out to at least 28 days. Culturing murine embryonic stem cell-derived cardiomyocytes (mESCDCs) alone and with MEFs on aligned and unaligned Phe PU scaffolds revealed both architectures supported adherent and functionally contractile cells. Importantly, fiber alignment and coculture with MEFs improved the organization and differentiation of mESCDCs suggesting these two parameters are important for developing engineered myocardial constructs using mESCDCs and PU scaffolds.
349

The Development of Elastomeric Biodegradable Polyurethane Scaffolds for Cardiac Tissue Engineering

Parrag, Ian 01 September 2010 (has links)
In this work, a new polyurethane (PU) chain extender was developed to incorporate a Glycine-Leucine (Gly-Leu) dipeptide, the cleavage site of several matrix metalloproteinases. PUs were synthesized with either the Gly-Leu-based chain extender (Gly-Leu PU) or a phenylalanine-based chain extender (Phe PU). Both PUs had high molecular weight averages (Mw > 125,000 g/mol) and were phase segregated, semi-crystalline polymers (Tm ~ 42°C) with a low soft segment glass transition temperature (Tg < -50°C). Uniaxial tensile testing of PU films revealed that the polymers could withstand high ultimate tensile strengths (~ 8-13 MPa) and were flexible with breaking strains of ~ 870-910% but the two PUs exhibited a significant difference in mechanical properties. The Phe and Gly-Leu PUs were electrospun into porous scaffolds for degradation and cell-based studies. Fibrous Phe and Gly-Leu PU scaffolds were formed with randomly organized fibers and an average fiber diameter of approximately 3.6 µm. In addition, the Phe PU was electrospun into scaffolds of varying architecture to investigate how fiber alignment affects the orientation response of cardiac cells. To achieve this, the Phe PU was electrospun into aligned and unaligned scaffolds and the physical, thermal, and mechanical properties of the scaffolds were investigated. The degradation of the Phe and Gly-Leu PU scaffolds was investigated in the presence of active MMP-1, active MMP-9, and a buffer solution over 28 days to test MMP-mediated and passive hydrolysis of the PUs. Mass loss and structural assessment suggested that neither PU experienced significant hydrolysis to observe degradation over the course of the experiment. In cell-based studies, Phe and Gly-Leu PU scaffolds successfully supported a high density of viable and adherent mouse embryonic fibroblasts (MEFs) out to at least 28 days. Culturing murine embryonic stem cell-derived cardiomyocytes (mESCDCs) alone and with MEFs on aligned and unaligned Phe PU scaffolds revealed both architectures supported adherent and functionally contractile cells. Importantly, fiber alignment and coculture with MEFs improved the organization and differentiation of mESCDCs suggesting these two parameters are important for developing engineered myocardial constructs using mESCDCs and PU scaffolds.
350

MAGNESIUM-TITANIUM ALLOYS FOR BIOMEDICAL APPLICATIONS

Hoffmann, Ilona 01 January 2014 (has links)
Magnesium has been identified as a promising biodegradable implant material because it does not cause systemic toxicity and can reduce stress shielding. However, it corrodes too quickly in the body. Titanium, which is already used ubiquitously for implants, was chosen as the alloying element because of its proven biocompatibility and corrosion resistance in physiological environments. Thus, alloying magnesium with titanium is expected to improve the corrosion resistance of magnesium. Mg-Ti alloys with a titanium content ranging from 5 to 35 at.-% were successfully synthesized by mechanical alloying. Spark plasma sintering was identified as a processing route to consolidate the alloy powders made by ball-milling into bulk material without destroying the alloy structure. This is an important finding as this metastable Mg-Ti alloy can only be heated up to max. 200C° for a limited time without reaching the stable state of separated magnesium and titanium. The superior corrosion behavior of Mg80-Ti20 alloy in a simulated physiological environment was shown through hydrogen evolution tests, where the corrosion rate was drastically reduced compared to pure magnesium and electrochemical measurements revealed an increased potential and resistance compared to pure magnesium. Cytotoxicity tests on murine pre-osteoblastic cells in vitro confirmed that supernatants made from Mg-Ti alloy were no more cytotoxic than supernatants prepared with pure magnesium. Mg and Mg-Ti alloys can also be used to make novel polymer-metal composites, e.g., with poly(lactic-co-glycolic acid) (PLGA) to avoid the polymer’s detrimental pH drop during degradation and alter its degradation pattern. Thus, Mg-Ti alloys can be fabricated and consolidated while achieving improved corrosion resistance and maintaining cytocompatibility. This work opens up the possibility of using Mg-Ti alloys for fracture fixation implants and other biomedical applications.

Page generated in 0.0588 seconds