• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and Stability of Antibiotic Resistance

Sjölund, Maria January 2004 (has links)
<p>Antibiotic resistance is of current concern. Bacteria have become increasingly resistant to commonly used antibiotics and we are facing a growing resistance problem. The present thesis was aimed at studying the impact of antibiotic treatment on pathogenic bacteria as well as on the normal human microbiota, with focus on resistance development.</p><p>Among the factors that affect the appearance of acquired antibiotic resistance, the mutation frequency and biological cost of resistance are of special importance. Our work shows that the mutation frequency in clinical isolates of <i>Helicobacter pylori</i> was generally higher than for other studied bacteria such as <i>Enterobacteriaceae; </i>¼ of the isolates displayed a mutation frequency higher than<i> Enterobacteriaceae </i>defective<i> </i>mismatch repair mutants and could be regarded as mutator strains.</p><p>In <i>H. pylori</i>, clarithromycin resistance confers a biological cost, as measured by decreased competitive ability of the resistant mutants in mice. In clinical isolates, this cost could be reduced, consistent with compensatory evolution stabilizing the presence of the resistant phenotype in the population. Thus, compensation is a clinically relevant phenomenon that can occur in vivo.</p><p>Furthermore, our results show that clinical use of antibiotics selects for stable resistance in the human microbiota. This is important for several reasons. First, many commensals occasionally can cause severe disease, even though they are part of the normal microbiota. Therefore, stably resistant populations increase the risk of unsuccessful treatment of such infections. Second, resistance in the normal microbiota might contribute to increased resistance development among pathogens by interspecies transfer of resistant determinants.</p>
2

Development and Stability of Antibiotic Resistance

Sjölund, Maria January 2004 (has links)
Antibiotic resistance is of current concern. Bacteria have become increasingly resistant to commonly used antibiotics and we are facing a growing resistance problem. The present thesis was aimed at studying the impact of antibiotic treatment on pathogenic bacteria as well as on the normal human microbiota, with focus on resistance development. Among the factors that affect the appearance of acquired antibiotic resistance, the mutation frequency and biological cost of resistance are of special importance. Our work shows that the mutation frequency in clinical isolates of Helicobacter pylori was generally higher than for other studied bacteria such as Enterobacteriaceae; ¼ of the isolates displayed a mutation frequency higher than Enterobacteriaceae defective mismatch repair mutants and could be regarded as mutator strains. In H. pylori, clarithromycin resistance confers a biological cost, as measured by decreased competitive ability of the resistant mutants in mice. In clinical isolates, this cost could be reduced, consistent with compensatory evolution stabilizing the presence of the resistant phenotype in the population. Thus, compensation is a clinically relevant phenomenon that can occur in vivo. Furthermore, our results show that clinical use of antibiotics selects for stable resistance in the human microbiota. This is important for several reasons. First, many commensals occasionally can cause severe disease, even though they are part of the normal microbiota. Therefore, stably resistant populations increase the risk of unsuccessful treatment of such infections. Second, resistance in the normal microbiota might contribute to increased resistance development among pathogens by interspecies transfer of resistant determinants.
3

Antibiotic susceptibility and resistance in Neisseria meningitidis : phenotypic and genotypic characteristics

Thulin Hedberg, Sara January 2009 (has links)
Neisseria meningitidis, also known as the meningococcus, is a globally spread obligate human bacterium causing meningitis and/or septicaemia. It is responsible for epidemics in both developed and developing countries. Untreated invasive meningococcal disease is often fatal, and despite modern intensive care units, the mortality is still remarkably high (approximately 10%). The continuously increasing antibiotic resistance in many bacterial pathogens is a serious public health threat worldwide and there have been numerous reports of emerging resistance in meningococci during the past decades. In paper I, the gene linked to reduced susceptibility to penicillins, the penA gene, was examined. The totally reported variation in all published penA genes was described. The penA gene was highly variable (in total 130 variants were identified). By examination of clinical meningococcal isolates, the association between penA gene sequences and penicillin susceptibility could be determined. Isolates with reduced susceptibility displayed mosaic structures in the penA gene. Two closely positioned nucleotide polymorphisms were identified in all isolates with reduced penicillin susceptibility and mosaic structured penA genes. These alterations were absent in all susceptible isolates and were successfully used to detect reduced penicillin susceptibility by real-time PCR and pyrosequencing in paper II. In papers III and IV, antibiotic susceptibility and characteristics of Swedish and African meningitis belt meningococcal isolates were comprehensively described. Although both populations were mainly susceptible to the antibiotics used for treatment and prophylaxis, the proportion of meningococci with reduced penicillin susceptibility was slightly higher in Sweden. A large proportion of the African isolates was resistant to tetracycline and erythromycin. In paper V, the gene linked to rifampicin resistance, the rpoB gene, was examined in meningococci from 12 mainly European countries. Alterations of three amino acids in the RpoB protein were found to always and directly lead to rifampicin resistance. A new breakpoint for rifampicin resistance in meningococci was suggested. The biological cost of the RpoB alterations was investigated in mice. The pathogenicity/virulence was significantly lower in rifampicin resistant mutants as compared with susceptible wild-type bacteria.

Page generated in 0.1121 seconds