• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 282
  • 94
  • 38
  • 1
  • Tagged with
  • 413
  • 215
  • 149
  • 93
  • 74
  • 60
  • 59
  • 58
  • 57
  • 52
  • 49
  • 43
  • 40
  • 40
  • 40
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Simulation en éléments-finis de différentes stratégies chirurgicales de correction d'une scoliose

Lafon-Jalby, Yoann 12 1900 (has links) (PDF)
La simulation numérique de correction chirurgicale de la scoliose peut apporter une aide précieuse à la planification d'une stratégie optimale pour un patient donné. Au cours des études précédentes menées au Laboratoire de Biomécanique, un premier modèle a été développé, et la faisabilité d'une telle simulation numérique personnalisée de chirurgie a été démontrée. Toutefois, l'extrême complexité et l'opérateurdépendance de ce modèle représentent un frein à son utilisation dans un cadre clinique. L'objectif de notre travail est, d'une part, de reprendre cette modélisation afin d'en améliorer deux éléments clefs pour une future utilisation clinique: l'automatisation de la personnalisation des propriétés mécaniques, et la robustesse (stabilité numérique et opérateur-indépendance) de la simulation de chirurgie. D'autre part, la modélisation de différents cas cliniques vise à évaluer la pertinence du modèle, et à mieux comprendre les mécanismes de correction. L'identification des propriétés mécaniques du rachis à partir de données in vivo (test clinique d'inclinaison latérale ou "bending"), a été automatisée en développant un algorithme d'optimisation guidée par de la connaissance a priori. La précision de cet outil a été évaluée sur des données in vivo issues des dossiers de trente patients scoliotiques. La simulation de chirurgie de correction de la scoliose a été rendue stable et opérateur-indépendante pour deux techniques différentes: par rotation de tige - instrumentation Cotrel- Dubousset ou CD - et par cintrage in situ ou CIS. En particulier, un algorithme spécifique définit et simule les séquences de cintrage in situ en accord avec l'expertise clinique. La cohérence de la simulation de chirurgie a été évaluée, tant au regard des données post-opératoires in vivo (issues des dossiers de vingt et dix patients scoliotiques pour les chirurgies respectives CD et CIS) que des mouvements vertébraux en per-opératoire (à partir de la littérature). Enfin, de multiples alternatives chirurgicales ont été envisagées, et différents concepts de correction ont été analysés sur le plan biomécanique. Notre travail ouvre des perspectives concrètes vers une utilisation en clinique de l'outil de simulation numérique personnalisée de chirurgie pour aider à la compréhension des mécanismes de correction, voire à la planification du geste chirurgical.
32

Quantification des paramètres biomécaniques qui affectent le système main-bras lors de la simulation de la tenue d'outils exerçant différentes vibrations et moments de force

Mandeville-Gauthier, Vincent 11 1900 (has links) (PDF)
Les vibrations main-bras sont spécifiquement reconnues pour être la cause du syndrome des vibrations, une maladie atteignant les doigts et la main à des niveaux vasculaires, musculo-squelettiques et neurosensoriels. De longues durées et de fortes intensités de vibration peuvent accélérer l'apparition des symptômes. De plus, des muscles soumis à la vibration ont tendance se contracter involontairement de façon plus intense que sans vibration : c'est le réflexe tonique vibratoire. Or, une plus grande rigidité musculaire est associée à une plus grande transmission de vibration aux structures corporelles. Le but de cette étude était de mesurer la transmission de vibration et mesurer le taux de contraction des muscles par électromyographie en fonction de différents paramètres de force de poussée, de moment de force, de fréquence et d'amplitude de vibration. De plus, les somatotypes ectomorphes et mésomorphes ont été comparés afin de déterminer si des gens de avec plus ou moins de masse musculaire obtenaient des résultats différents. Douze participants (six ectomorphes et six mésomorphes) ont participé à cette expérimentation. Cette expérimentation durait environ 3h et comportait 81 essais en fonction d'une combinaison des trois niveaux de chacune des quatre variables (poussée, moment de force, amplitude de vibration et fréquence de vibration). Le somatotype n'a pas eu d'effet notable ni sur la vibration et peu sur le réflexe tonique vibratoire. Les variables biomécaniques (moment de force, force de poussée) ont généralement eu pour effet d'augmenter la transmission de vibration ainsi que les scores d'EMG. Les variables de vibration ont permis de déceler la présence d'un réflexe tonique vibratoire significatif mais de faible importance. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Électromyographie, outils vibrants, réflexe tonique vibratoire, somatotype, moment de force.
33

Le fil orthodontique hybride et son influence sur les mouvements de troisième ordre : une étude comparative

Yacoub, Serge January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
34

Etude in vivo du comportement mécanique du derme par une méthode élastographique haute résolution : applications à l'exploration d'anomalies du tissu élastique (syndrome de Marfan). / In vivo study of the mechanical behavoir of the dermis by a method of elastography resolution : applications to the exploration of abnormal elastic tissue (Marfan syndrome).

Gahagnon, Solène 27 January 2009 (has links)
Aucun résumé disponible. / No summary available.
35

Contribution à la mise en œuvre et l’évaluation de technologies embarquées pour l’appareillage de personnes amputées du membre inférieur / Contribution to the implementation and the evaluation of intelligent technologies for the fitting of lower limb amputee people

Dauriac, Boris 27 March 2018 (has links)
L’appareillage permet à aux personnes amputées de membre inférieur de retrouver une autonomie de déplacement. Actuellement, cette autonomie est limitée dans certaines situations de la vie courante comme la marche en pente ou en escalier. Des capteurs dits embarqués sont de plus en plus souvent intégrés dans les prothèses et permettent d’enregistrer des informations cinématiques et dynamiques au cours de la locomotion. Dans ce contexte, l’objectif de la thèse est de contribuer au développement de méthodes de traitement des données issues de ces technologies pour quantifier et améliorer l’adaptation de la prothèse à l’environnement. Ces méthodes ont été mises en œuvre et évaluées dans le cadre de l’utilisation d’un nouveau système prothétique contrôlé par microprocesseur de genou-cheville (SPCM), développé par la société Proteor et visant à faciliter la locomotion des personnes amputées au-dessus du genou dans les situations de pente ou de descente d’escalier. La première partie de cette thèse a été consacrée à la quantification des adaptations permises par le SPCM au cours de la locomotion dans différentes situations de la vie courante (plat, pente, escalier). La deuxième partie de la thèse s’est intéressée à développer des estimations de paramètres de la marche (vitesse de marche et inclinaison de la pente) et à la classification de 4 situations de la vie courante (plat, montée et descente de pente, descente d’escalier) à l’aide d’algorithmes d’apprentissage automatique pouvant être calculé par le SPCM en temps réel. L’ensemble de ces travaux permettra de mieux quantifier l’activité réelle de l’utilisateur. Cette quantification pourrait aider l’utilisateur ou l’équipe médicale pour le suivi d’activité mais aussi le constructeur pour améliorer l’adaptation des éléments prothétiques à l’environnement rencontré et pour vérifier l’utilisation réelle du SPCM. / Prosthetic devices allow people with lower limb amputation to recover their autonomy. Currently, this autonomy is limited in several everyday life situations such as walking on a slope or in stairs. Embedded sensors, frequently integrated inside the prostheses, record kinematic and dynamic data during locomotion. In this context, this PhD thesis aims to contribute to the development of methods for the processing of data provided by these technologies to quantify and improve the adaptation of the prosthesis to the environment. These methods were applied and evaluated in the context of the use of a new prosthetic knee-ankle system controlled by microprocessor (SPCM) developed by Proteor to facilitate the locomotion in situations such as slope or downstairs walking for people with above knee amputation. The first part of the work was devoted to the quantification of the adaptations allowed by the SPCM in different situations of daily life (flat, slope, staircase). The second part of the thesis focused on the estimation of gait parameters (walking speed and slope inclination) and the classification of 4 everyday life situations (flat, slope ascent and descent, stair descent) using machine learning algorithms that can be computed by the SPCM in real time. The body of this work will make it possible to better quantify the user real life activity. This quantification could help the user or the medical team in the activity monitoring but also the manufacturer to improve the adaptation of the prosthetic components to the environment and to verify the SPCM actual use.
36

Simulation bio-informatique de la structure des plantes pour la caractérisation de leurs propriétés mécaniques au niveau cellulaire / Computational modeling of internal mechanical structure of plant cells

Malgat, Richard 28 September 2015 (has links)
Dans le cadre de l'étude de la morphogénèse des plantes, bien que la génétique soit intensivement étudiée, le concept clé de rhéologie à différentes échelles : cellulaire, tissulaire ou de l'organisme entier, qui gouverne directement la croissance des organismes et devrait permettre la connaissance de l'évolution de la plante reste encore très pauvrement analysé.Ce travail porte ainsi sur la description des paramètres mécaniques des cellules de plantes, à travers la réalisation de modèles numériques physiques et réalistes de différents sous-domaines de l'organisme Arabidopsis thaliana. Dans ce projet, une approche systématique sera développée pour la réalisation de ces modèles où nos structures s'appuieront sur des données expérimentales (images des différents organes de la plante) décrivant précisément la structure interne d'A. thaliana, ce qui permettra l'obtention de structures et maillages réalistes.Ensuite l'étape de modélisation permettra d'une part de retrouver, à travers le champs de déformation de l'organe décrit, les caractéristiques mécaniques sous-jacentes au modèle, ce qui constitue une forme de problème inverse biologique complexe. Nous appliquerons cette méthodologie à différents sous-domaine de notre plante archétype, commençant par les jeunes tiges, puis les racines et enfin le meristème qui constitue la zone première de croissance de la plante.D'autre part, nous développerons un cadre théorique, sur lequel pourront s'appuyer les biologistes, décrivant un modèle d'organe d'A. thaliana réaliste, typiquement le meristème, et qui permettra de valider ou d'infirmer certaines hypothèses de manipulations encore sujettes à débat, notamment dans le cadre d'utilisation de microscope à force atomique afin d'extraire expérimentalement les propriétés mécaniques des tissus.Enfin, nous présenterons une nouvelle approche mécanique hiérarchique couplant des modèles de simulation à différentes échelles : Multifarious Hierarchy of Mechanical Models. Cette nouvelle approche est à la fois éclectique, car elle permet de coupler des modèles physiques variés (sans maillages, physique modale, éléments finis...), mais aussi flexible, car elle autorise la modularité des différents domaines des modèles sous-jacents, et enfin efficace par l'obtention de gains de performance et de temps face à des simulations éléments finis s'appuyant sur le même niveau de détail. Cette approche devrait permettre le développement d'algorithmes rapides pour les simulations physiques où un niveau de détail local est requis. Par exemple, elle pourrait s'appliquer aux simulations de microscope à force atomique décrites dans la partie précédente. / Morphogenesis in plants is an active field of research. While genetics influence on plant shape has been extensively studied, rheology through scales: from cells to the whole organism through various tissues or organs, is still poorly analysed. Nevertheless, it should lead to the understanding of plants evolving, since it directly drives the organism growth.This work aims at understanding the mechanical caracteristics of plant cells, through several realistic and physically based models of various sub-domains of our plant archetype: Arabidopsis thaliana. In this project, a systematic approach has been developped, where the structures underlying such models rely on experimental data (images of different plant organs), describing precisely the inner structure of A. thaliana, which allows the use of realistic meshesfor our simulations.Then physical modelling allows us to retrieve, through the deformation field of different plant sub-domains, the mechanical properties underlying each type of structure described, which is a typical inverse problem form of a complex biological system. We apply this optimization methodology to several plant organs, beginning with embryonic stem, then with roots and finally with meristems, which constitute the zone where cells can divide and growthtypically takes place.Then, we develop a theoretical framework, on which biologists may rely, describing a realistic model of plant sub-system, typically a meristem. We hope that this conceptual framework will help experimentalists to validate some hypothesis regarding plant manipulations that are still subject to debate, as the use of Atomic Force Microscopy to experimentaly extract mechanical parameters from various plant tissues.Finally, we present a new approach coupling a coarse physically based simulation to a more detailed one : the Multifarious Hierarchiy of Mechanical Models. MHMMs are eclectics as they combine arbitrarily any type of physically based simulation (meshless, modal physics, Finite Elements, ...). Moreover, they are flexible as they allow the modularity of the various domainscontaining the underlying models. Finally MHMMs are much faster than full Finite Element simulation, at the same level of detail. This should allow the development of fast algorithm for local detailed simulation, as was the case for the numerical Atomic Force Microscope in previous part.
37

Modélisation mécanique et numérique du comportement des bustes féminins / Mechanical and numerical modeling of female breasts behaviour

Dufaye, Guillaume 09 December 2014 (has links)
La modélisation avancée du comportement réel des bustes féminins en statique ou en dynamique doit tenir compte des constituants biologiques du sein. La simulation numérique de la déformabilité de sein permettrait le développement de nouvelles techniques de confections pour la corsetterie ou de nouveaux appareillages médicaux, notamment pour le dépistage du cancer du sein. Dans cette étude, une approche expérimentale-simulation-optimisation prenant en compte les constituants (peau, graisse et glandes) responsables de la déformabilité du sein sous l’effet de la gravité est proposée. Pour cela, des modèles géométriques 3D ont été générés à partir d’images IRM afin de reconstruire les constituants internes. Des outils de maillages surfaciques et volumiques adaptatifs ont été utilisés pour les besoins des simulations éléments finis sur Comsol. Des essais expérimentaux de la déformabilité des bustes en statique et dynamique ont pu être réalisé à l’aide d’un système de scanner 3D par caméras et d’un banc spécifique d’inclinaison des bustes. Des modèles numériques des seins ont été confronté aux expérimentations et à la littérature afin d’identifier et d’optimiser par approche inverse les caractéristiques des seins / Advanced modeling of female bust behaviour in static or dynamic must consider the biological of each components of the breast. The numerical simulation of breast deformation enables the development of new techniques for confections corsetry or new medical devices, including screening for breast cancer. In this study, an experimental-simulation-optimization approach that takes into account the components (skin, fat and glands) responsible for the deformability of the breast under the gravity loading is proposed. Geometrical models were generated from MRI images for 3D reconstruction of internal components is used with using advanced adaptive mesh surface and volume for purposes of finite element simulations using Comsol Multiphysics. Experimental tests are developed using a 3D scanner cameras and a special gear for study the busts deformability in static and dynamic. Numerical hyperelastic models of Comsol Multiphysics FEA are using for breasts deformation to characterize and optimize with reverse approach the breast mechanical properties. Confrontation with experimental and literature results is proposed in order to demonstrate the efficiency of our approach
38

Apport des techniques temps fréquence à la caractérisation mécanique du corps humain en choc / Reaching injury chronology in impact biomechanics using time frequency signal processing

Gabrielli, François 18 February 2010 (has links)
Ce travail de thèse s’inscrit dans le cadre du développement d’un nouvel outil d’analyse et d’exploitation des expérimentations biomécaniques sur corps donnés à la science. Ces expérimentations pleine échelle, comme la reconstitution complète d’un accident réel, ou dit ‘fractionné’, comme l’investigation du comportement mécanique d’une articulation ou la validation d’un modèle éléments finis, utilisent des corps entier ou des segments anatomiques. L’exploitation de ces essais englobe l’analyse des résultantes accélérométriques et des vidéos rapides. Dans tous les cas l’objectif est de saisir les mécanismes lésionnels mis en jeu : si l’autopsie finale donne le bilan complet des lésions provoquées par l’essai expérimental, il est souvent complexe de retrouver la séquence chronologique d’apparition des lésions, voire de localiser anatomiquement cette lésion. Les méthodes actuelles souffrent d’un manque dans l’identification des lésions sur le traitement du signal : l’identification et la localisation temporelle d’une lésions sur un signal permettrait d’affiner la compréhension des mécanismes de destructions du corps humain et de compléter la validation des modèles éléments finis du corps humain. Les signaux accélérométriques issus de la biomécanique de chocs étant non stationnaires et fortement transitoires c’est vers le traitement du signal temps-fréquence que nous somme allé chercher de quoi localiser et discriminer l’apparition d’une lésion sur un signal. C’est plus précisément à partir de la transformée en ondelette continue que nous avons définit un critère de force de transitoire : un scalaire dépendant du temps reflète l’aspect transitoire du signal sur la bande fréquentielle supérieur du spectre temps-fréquence. Cette utilisation simple de la transformée temps échelle va être appliquée à deux structures critiques en biomécanique : le thorax, en tant que structure supportant les organes vitaux et faisant l’objet de moyen de protection spécifique, et le membre inférieur, en tant que premier segment anatomique touché en choc piéton. Dans le cas du thorax, le critère d’estimation de la force d’un transitoire a permis de cartographier de trajet d’un signal transitoire généré par la fracture d’une côte : ce résultat critique permettra de réduire l’instrumentation en biomécanique du thorax tout en en améliorant l’efficacité en terme de détection et localisation de fracture. Dans le cas du membre inférieur, le critère en transitoire a permis de discriminer les signaux transitoires provoqués par une fracture osseuse de ceux provoqué par une avulsion ligamentaire. L’accès à la distinction os/ligament est une avancée majeure dans l’exploitation des expérimentations biomécaniques sur le membre inférieur : les lésions pourront être associées plus facilement à une source lésionnelle et l’accès potentiel à l’état lésionnel de l’articulation du genou permettra de compléter la validation d’un modèle éléments finis. En conclusion cette thèse pose les bases de l’application de méthodes temps échelle à la biomécanique des chocs et permet d’analyser les signaux transitoires générés par les lésions pour améliorer leur localisation anatomique et temporelle. Ce travail très investigatoire devrait permettre de mettre au point un véritable outil d’exploitation expérimental à l’avenir. / This work introduces a new tool to be used in biomechanical experiment based on human surrogates. Those xperiments need human bodies or anatomic segments. They can be ‘full scale’when dealing with crash reconstruction or ‘sub system’ when dealing with any investigation that focuses on mechanical behavior of biological structure. Actual means of post processing of these experiments include accelerometers signal processing, necropsy and fast video recording. The objectives are usually to understand all injury mechanisms. The final necropsy indicates a listing of all injuries sustained by a human surrogate and an important issue is to recover the chronology of these injuries. Current signal post processing methods lack any injury identification system. Accelerometric signals recorded during impact biomechanical tests are definitely non stationary. We propose to use an approach based on time frequency visualization in order to detect and characterize any injury occurrence within those signals. More precisely we applied continuous wavelet transform and introduced a new criterion that quantifies any transient, or singularity, of the signal: we made the hypothesis that singularities are images of injury occurrence. The quantification of the singularity is calculated from the amount of high frequency contained in the signal. The criterion is applied to two anatomical structures of the human body. Firstly on the thorax, as it supports all vital organs and it is the object of intense safety system development. Secondly the criterion is applied on the lower limb, as it s the primary impacted structure during car/pedestrian collision. The application of the transient criterion to the thorax showed that transient signal caused by rib fractures can be tracked down. The knowledge of the path of the transient signal through the thorax lead to a better understanding of the injury mechanism of the rib. Detection and localization of the fracture rib is then improved and further instrumentation for similar biomechanical test could be tremendously reduced in the future. In the case of the lower limb, the transient criterion was used to localize in time any injury occurrence. Moreover the criterion enabled to discriminate ligament failure from bone fracture. This differentiation gives access to the chronology of injury occurrence during sub system impact test or full scale car crash reconstruction. The knowledge of such an internal chronology can lead to car improvement and further validation tool for finite element modes. In conclusion this work introduces a new application of time scale representation to impact biomechanics. Transient signals coming from injury can be localized in time and the origin of the injury can be determined. This preliminary study can be further completed to build an actual tool for the post processing and exploitation of impact biomechanical experiments.
39

On the role of mechanical feedback in plant morphogenesis / Rôle de la rétroaction mécanique dans la morphogenèse des plantes

Oliveri, Hadrien 28 May 2019 (has links)
L'acquisition de la forme - ou morphogenèse - chez les systèmes vivants, est largement contrôlée par les gènes. Néanmoins, le lien précis entre, d'une part, les processus chimiques locaux associés aux gènes, et, d'autre part, la géométrie des tissus, n'est pas complètement identifié. Ce lien est vraisemblablement très indirect et médié par des processus mécaniques. Ainsi, il est aujourd'hui admis que les processus chimiques intracellulaires régulent les propriétés mécaniques des cellules seulement localement, et que la forme émerge comme la résolution globale de contraintes mécaniques. Ce paradigme, dit biomécanique, est employé dans cette thèse dans le cas de la morphogenèse des plantes, qui repose majoritairement sur la croissance cellulaire. Le contrôle local de cette croissance est crucial pour la stabilité et la robustesse de la morphogenèse, et implique différents mécanismes de régulation. En particulier, selon une hypothèse récente, les cellules pourraient adapter dynamiquement leur croissance en réponse aux forces qu'elles subissent.Cette régulation locale s'intègre à une échelle multicellulaire de manière non intuitive. Dans cette thèse, j'ai exploré i/ une formalisation mathématique de la régulation de la croissance par les contraintes mécaniques et ii/ le comportement macroscopique émergent d'un tel mécanisme. Pour cela, j'ai adopté une approche de modélisation multi-échelle basée sur une formulation mathématique continue de la croissance cellulaire (développée précédemment dans le cadre de la théorie de la morphoélasticité), et sur une description moyenne des processus moléculaires locaux étant supposés impliqués dans la mécano-perception et le contrôle de l'élasticité des cellules. J'ai d'autre part conçu des algorithmes dédiés à l'étude de ce modèle, intégrés dans un environnement logiciel existant, basé sur la méthode des éléments finis. Ce modèle est en particulier utilisé dans l'étude de la stabilité d'organes à fort degré d'asymétrie, tels que les feuilles, en suggérant qu'un contrôle de la croissance basé sur les forces peut permettre l'amplification d'asymétries initiales. / How do living objects acquire their shape? Incontrovertibly, morphogenesisis largely regulated by genes. Yet, the precise link between thechemical processes associated with genes, on the one hand, and geometry,one the other hand, is not completely identified. This link is most probablyindirect, and mediated by mechanical processes. It is now well acceptedthat intracellular molecular processes regulate locally cell mechanicalproperties and that shape emerges as the global resolution of resultingmechanical constraints.This so-called biomechanical paradigm is employed in this thesis in thecontext of plant morphogenesis, that mostly relies on cell growth. Thelocal control of growth is crucial for the stability and robustness ofmorphogenesis, and relies on various regulatory mechanisms. Inparticular, according to a recent hypothesis, cells may dynamicallyadapt their growth behavior in response to the mechanical forces theyexperience.This local regulation integrates at larger, multicellular scale, in anonintuitive way. In this thesis, I investigate i/ the mathematicalformalization of a stress-based control of growth and ii/ themacroscopic emergent behavior of such mechanism. To do so, I have used amultiscale modeling approach, based on a continuum mathematical modelof growth (previously developed within the theory of morphoelasticity),and on a mean description of the molecular processes supposedly involvedin mechanoperception and the control of cell elastic properties. Tostudy this model, I have designed dedicated algorithms, integrated into apreviously developed software environment, based on the finite elementmethod. This model is then used to study the mechanical stability ofhighly asymmetric organs like leaves, suggesting that a force-basedcontrol of growth allows the amplification of shape asymmetry duringdevelopment.
40

Modeling biodegradable stents and their effect on the arterial wall / Modélisation des stents biodégradables et de leur impact sur la paroi artérielle

Mensah-Gourmel, Johanne 29 September 2016 (has links)
Les stents sont aujourd’hui le traitement le plus courant des stades avancés de l’athérosclérose. Le concept de stents bioresorbables (BRS) est basé sur l’idée qu’un stent n’est nécessaire que jusqu’à la guérison de l’artère – suite à quoi il serait préférable que le stent disparaisse, afin de retrouver un état plus physiologique. Le déploiement d’un stent altère significativement les contraintes mécaniques exercées sur la paroi artérielle, or celles-ci jouent un rôle important dans l’incidence de complications telle que la resténose et l’hyperplasie néointimale. Dans le cas d’un BRS, les contraintes mécaniques dans le stent comme dans la paroi artérielle évoluent au fur et à mesure que le stent se dégrade. De plus, la dégradation du stent par hydrolyse peut être accélérée par ces contraintes : un couplage supplémentaire qui doit être pris en compte. Nous nous intéressons à la détermination de l’évolution des contraintes dans le stent et dans l’artère pendant le déploiement puis la dégradation du stent, ainsi qu’à l’influence de ces contraintes sur la dégradation du stent et sur le remodelage de la paroi, qui est également influencé par la dénudation de l’endothélium et par l’inflammation induite par l’implantation d’un BRS. Pour atteindre ces objectifs, nous avons développé un modèle 3D par éléments finis du déploiement et de la dégradation d’un BRS en acide polylactique tenant compte du couplage entre l’artère et le stent. Il permet notamment de prédire les zones de démantèlement dustent et l’évolution de l’épaisseur de la paroi artérielle en réponse à l’implantation d’un BRS. Etant donné que le modèle repose fortement sur des paramètres qui doivent être déterminés expérimentalement, nous nous sommes intéressés au développement d’une méthode expérimentale pour suivre la dégradation d’un BRS. Nous avons utilisé la tomographie par cohérence optique (OCT) pour suivre régulièrement la dégradation de stents déployés dans des tubes et immergés dans du sérum physiologique à 37°C pendant deux ans. Nous avons ensuite développé une méthode qui détecte automatiquement les struts des stents sur les images OCT et quantifie leur intensité de niveau de gris. Les résultats suggèrent que cette méthode automatisée d’analyse d’images OCT est un outil prometteur pour évaluer quantitativement l’état de dégradation d’un BRS. Enfin, nous nous sommes intéressés à la capacité d’une artère stentée à s’adapter à une modification du cisaillement ressenti. Nous avons étudié l’évolution de la lumière artérielle de porc stentés suivis in vivo par OCT ainsi que le cisaillement associé. Alors qu’un stent métallique bloque le remodelage artériel, nous avons observé qu’un BRS – probablement grâce au démantèlement du stade final de la dégradation – libère le vaisseau et permet ainsi l’adaptation de son diamètre de manière à diminuer le cisaillement et l’inadéquation avec l’artère non stentée. L’adaptation de la lumière artérielle permise par le démantèlement du stent pourrait être prise en compte dans de futurs modèles numériques. / Today, sent deployment is the most common treatment for symptomatic atherosclerosis. Bioresorbable stents (BRS) are based on the premise that a stent is needed only until arterial wound healing occurs after which it would be desirable for the stent to degrade so that the arterial wall recovers its natural compliance. Deployment of a stent profoundly alters the mechanical environment in the arterial wall, and these alterations play an important role in regulating the incidence of complications such as restenosis and neointimal hyperplasia. In the case of a BRS, the mechanical stresses in both the stent and the arterial wall evolve as the stent degrades. Furthermore, the hydrolysis-driven degradation of the stent can be accelerated by mechanical stresses in the stent, an additional coupling that needs to be taken into account. We are interested in determining the evolution of stresses in both the stent and the arterial wall during the stent deployment and degradation process and in elucidating the effect of these stresses on the stent degradation and on the remodeling process in the wall, which would also be influenced by the loss of endothelial cells and the amount of inflammation induced by the stent deployment and degradation. To this end, we have developed a 3D finite element model of the deployment and degradation of a polylactic acid (PLA) BRS that integrates the coupling between the stent and the artery.This allows one to predict the zones of dismantling of the stent and the evolution of the arterial thickness in response to a BRS stenting procedure. Since the model relies strongly on parameters that need to be determined experimentally, we became interested in developing methods to follow stent degradation. With this aim, we used optical coherence tomography (OCT) to image several BRS that were deployed into tubes and allowed to degrade in a saline solution at 37°C over a period of two years. We subsequently developed a versatile method for automatically detecting stent struts on the OCT images and quantifying the strut gray scale intensity. The results suggest that this automated method of OCT image analysis represents a promising tool to quantitatively assessing BRS degradation states. Lastly, we were interested in establishing the ability of a stented artery to adapt to a modification in its wall shear stress. Studying the in vivo evolution of the lumen of stented mini-swine arteries followed by OCT imaging allowed us to demonstrate that whereas a bare metal stent cages the artery, a BRS, presumably due to its degradation-induced dismantling, frees the vessel and enables it to adapt its lumen diameter in order to decrease its absolute level of shear stress and the compliance mismatch with the unstented portion of the artery. This lumen adaptation allowed by the stent dismantling could be taken into account in future computational models.

Page generated in 0.4395 seconds