1 |
Development and evaluation of recommendations for whole-body vibration training: aspects of vibration loads and training protocols / Entwicklung und Evaluation von Empfehlungen für Ganzkörper-Vibrationstraining unter dem Gesichtspunkt von Vibrationsbelastungen und TrainingsgestaltungPerchthaler, Dennis 02 June 2015 (has links) (PDF)
Background
Whole-body vibration (WBV) as a training modality is established in the fields of sport, fitness, rehabilitation, and clinical intervention. WBV exercises are performed thereby while standing on a motor driven oscillating platform device. Therefore, the scientific interest in WBV is a steadily increasing field in sports science and research. It has been shown that WBV training elicits various biological and physiological effects in men. Nevertheless, there are only a small number of studies examining WBV effects on neuromuscular performance of the lower extremities in elderly people. Furthermore, the results of these studies show many discrepancies that may be caused by limitations referring to the different applied training protocols and vibration loads. In addition, there is still a deficit of information for effective but safe recommendations for WBV application for trunk and neck muscles. Therefore, this doctoral thesis deals with three major aspects of WBV as an exercise modality in strength training: (1) the recommendation of optimal vibration loads (VbLs) for the lower extremities as an essential element of the WBV exercise parameters in older adults, (2) the evaluation of these VbLs in a WBV training intervention for elderly people with regard to feasibility and chronic effects on neuromuscular performance of the lower limbs, and (3) the allocation of information for effective but safe advices for VbLs for trunk and neck muscles. These aspects are further specified toward five hypotheses (H1, H2, H3, H4, and H5) by findings and limitations of the current state of literature.
Methods
The five hypotheses are evaluated within three research papers (studies 1 to 3). The first study (S1) evaluated the optimal VbL determined by the combination of three biomechanical variables (vibration frequency, vibration amplitude, and knee angle) in older adults (H1). Therefore, the neuromuscular activity of the quadriceps femoris and hamstring muscles in 51 healthy subjects were measured during WBV exposure using surface electromyography (EMG). Maximal voluntary contractions (MVCs) were conducted prior to the measurements to normalise the EMG signals. A three-way mixed ANOVA was performed to analyse the different effects of the biomechanical variables on muscle activity. Study 2 (S2) represents a randomised controlled trial to assess the results of S1 implemented in a WBV training protocol and therefore to evaluate the feasibility and effectiveness of a six-week WBV intervention (H2, H3, and H4). A total of 21 subjects was allocated randomly into either a WBV training or control group. While the WBV group completed a six-week WBV training programme the control group was asked not to change their current level of physical activity during the study. Before and after the intervention period, jump height was measured during a countermovement jump (CMJ). In addition, isokinetic knee extension and flexion strength parameters were recorded using a motor-driven dynamometer. The Borg scale for ratings of perceived exertion (RPE scale) was used to evaluate the intensity of WBV exercises within each training session. Changes from pre- to posttest were analysed by a paired sample t-test (within-group comparisons) and independent sample t-test (between-group comparisons). The intention of study 3 (S3) was to analyse the impact of biomechanical variables on neuromuscular activity of different trunk and neck muscles during WBV (H5) filling the lack of information in current literature. Those biomechanical variables were assumed, which current literature suggests as having the lowest risk of negative side effects on the head. Surface EMG was used to record the neuromuscular activity in 28 healthy subjects. EMG signals were normalised to prior measured MVC. Different effects of the biomechanical variables were analysed by an ANOVA for repeated measurements.
Results
The findings of S1 showed that the biomechanical variables affect the level of neuromuscular activity of thigh muscles in older adults in different dimensions which confirms H1. The maximum levels of muscle activity were significantly reached at high amplitude and high frequency, whereas the factor “knee angle” only significantly affected the quadriceps femoris. Furthermore, WBV led to a higher muscle activation of the quadriceps femoris (74.1 % MVC) than of the hamstring muscles (27.3 % MVC). The main findings in S2 were an increased multi-joint strength performance of the lower limbs during a countermovement jump in the WBV group, whereas values of the control group remained unchanged after the intervention, thus confirming H2. There were no statistically significant differences in isokinetic maximal strength, mean power, or work values in knee extension or flexion in both groups (rejecting H3). In addition, the subjective perceived exertion of the WBV exercises and respective training parameters ranged between moderate rating levels of 7 and 13 of the Borg scale and indicate WBV intervention as a feasible and safe training program for elderly people, which is consistent with H4. Finally, the outcomes of S3 confirmed H5 as the biomechanical variables affect the level of neuromuscular activity of the trunk and neck in different dimensions. The maximum levels of muscle activity were significantly reached at high amplitude and high frequency, while knee angles had similar effects on the VbL. WBV led to a higher muscle activation of the lower back muscles (27.2% MVC) than of neck muscles (8.5 % MVC) and the abdominal muscles (3.6 % MVC).
Conclusion
A maximised VbL for WBV training in older adults depends on specific combinations of the biomechanical variables (vibration frequency, vibration amplitude, and knee angle). In addition, a WBV training based on this age-specific high VbL is a feasible, suitable and effective training program for elderly people to prevent age-related reduction of muscle performance in the lower extremities. Furthermore, the combination of biomechanical variables recommended in literature as safe for preventing harmful transmissions to the head, only elicit low to moderate muscle activation of the upper body. The findings of this thesis represent fundamental research in the field of WBV and may help to improve further research in this area. Finally, this thesis may help coaches and therapists to enhance the quality of WBV training in practical application. / Hintergrund
Ganzkörpervibration (Whole-Body Vibration, WBV) hat sich als Trainingsanwendung im Sport-, Fitness, Rehabilitationsbereich und klinischen Bereich etabliert, wobei die Übungen dabei im Stehen auf einer Vibrationsplatte durchgeführt werden. In diesem Zusammenhang ist auch das wissenschaftliche Interesse am Vibrationstraining ein stetig wachsendes Feld in den Bereichen der Sportwissenschaft und Forschung. Bisher konnte gezeigt werden, dass Vibrationstraining verschiedene biologische als auch physiologische Reaktionen beim Menschen hervorruft. Dennoch gibt es nur wenige Untersuchungen, die sich mit den Auswirkungen des Vibrationstrainings auf die neuromuskuläre Leistung der unteren Extremitäten bei älteren Menschen beschäftigen. Des Weiteren weißen die Ergebnisse dieser wenigen Studien viele Widersprüchlichkeiten auf, welche durch die unterschiedlich verwendeten Trainingsvorgaben und Vibrationsbelastungen verursacht sein könnten. Darüber hinaus besteht noch ein großes Defizit an grundlegenden Informationen hinsichtlich effektiver, aber dennoch sicherer Vorgaben in der Anwendung des Vibrationstrainings im Bereich der Rumpf- und Nackenmuskulatur. Vor diesem Hintergrund beschäftigt sich die vorliegende Dissertation mit drei wesentlichen Aspekten des Vibrationstrainings: (1) die Empfehlung von optimalen Vibrationsbelastungen (VbL) als wesentlicher Bestandteil des Vibrationstrainingsplans der unteren Extremitäten älterer Menschen, (2) die Evaluierung dieser VbL anhand einer auf Vibrationstraining basierter Intervention mit älteren Menschen hinsichtlich Durchführbarkeit und Auswirkungen auf die neuromuskuläre Leistung der unteren Gliedmaßen, und (3) Angaben für effektive und sichere VbL für Rumpf- und Nackenmuskulatur bereitzustellen. Mit der Aufarbeitung von Ergebnissen und Defiziten des aktuellen Forschungsstands werden diese Aspekte durch die Formulierung von fünf Hypothesen (H1, H2, H3, H4, and H5) weiter spezifiziert.
Methodik
Die fünf Hypothesen werden in drei wissenschaftlichen Veröffentlichungen (Studie 1 bis 3) untersucht. Die erste Studie (S1) befasste sich mit der optimalen VbL für ältere Personen (H1), welche durch die Kombination von drei biomechanischen Variablen (Vibrationsfrequenz, Vibrationsamplitude und Kniewinkel) bestimmt wird. Hierzu wurde die neuromuskuläre Aktivität der vorderen und hinteren Oberschenkelmuskulatur von 51 gesunden Probanden unter Vibration mittels Oberflächen-Elektromyografie (EMG) gemessen. Vor den Messungen wurden maximale muskuläre Kontraktionen durchgeführt, um die EMG zu normalisieren. Um die unterschiedlichen Auswirkungen der biomechanischen Variablen zu analysieren wurde eine drei-faktorielle Varianzanalyse durchgeführt. Studie 2 (S2) entspricht einer randomisierten kontrollierten Studie, welche die Ergebnisse aus S1 in einem Trainingsplan verwendet, um die Durchführbarkeit und Effektivität eines sechs wöchigen Vibrationstrainings zu untersuchen (H2, H3, und H4). Hierfür wurden 21 Probanden zufällig einer Vibrationstrainings- oder einer Kontrollgruppe zugeteilt. Während die Vibrationsgruppe ein sechs wöchiges Vibrationstraining absolvierte, wurden die Teilnehmer der Kontrollgruppe gebeten ihre körperliche Aktivität während des Studienzeitraums nicht zu verändern. Vor und nach dem Untersuchungszeitraums wurde die Sprunghöhe während eines „countermovement jump“ (CMJ) erfasst. Weiterhin wurden isokinetische Kraftmessgrößen der Kniegelenkbeugung und –streckung an einem Dynamometer ermittelt. Die Borgskala zur Erfassung des subjektiven Belastungsempfindens wurde eingesetzt, um die Intensität der Übungen des Vibrationstrainings innerhalb einer Trainingseinheit zu messen. Veränderungen der Messgrößen zwischen Eingangs- und Abschlusstest wurden statistisch mit einem t-Test für abhängige (innerhalb einer Gruppe) und einem t-Test für unabhängige Stichproben (zwischen den Gruppen) untersucht. Ziel der dritten Studie (S3) war es den Einfluss der biomechanischen Variablen auf die muskuläre Aktivierung verschiedener Rumpf- und Nackenmuskeln (H5). Hierzu wurden solche biomechanische Variablen ausgesucht, welche laut derzeitigem Wissensstand jeweils das geringste Risiko von Nebenwirkungen für den Kopf ausüben. Mittels Oberflächen-EMG wurde die muskuläre Aktivität von 28 Probanden erfasst. EMG Signale wurden zu vorangegangenen MVC Messungen normalisiert. Die Unterschiedlichen Effekte der biomechanischen Variablen wurden mittels einer Varianzanalyse für Messwiederholungen analysiert.
Ergebnisse
Die Ergebnisse von S1 konnten zeigen, dass die biomechanischen Variablen den neuromuskulären Aktivierungsgrad der Oberschenkelmuskulatur bei älteren Personen unterschiedlich beeinflussen und somit H1 bestätigen. Der höchste Grad der Aktivierung wurde deutlich mit einer großen Amplitude und hohen Frequenz erreicht, wobei der Kniewinkel ausschließlich die vordere Oberschenkelmuskulatur beeinflusst. Zudem, führte der Vibrationseinfluss zu einer größeren Muskelaktivität der Oberschenkelvorderseite (74.1 % MVC) als der –rückseite (27.3 % MVC). Die Resultate von S2 hinsichtlich des CMJ Tests bestätigen H2, da es in der Vibrationstrainingsgruppe zu einer gesteigerten gelenksübergreifender Kraftleistung in den Beinen kam, aber keine Veränderungen in der Kontrollgruppe feststellbar waren. Hingegen kam es in keiner Gruppe zu statistisch signifikanten Veränderungen der isokinetischen Messgrößen (Maximalkraft, Kraftleistung, Muskelarbeit), wodurch H3 abgelehnt wird. Das subjektive Belastungsempfinden der Übungen und des Belastungsgefüges des Vibrationstrainings liegt zwischen moderaten Bewertungsstufen von 7 bis 13 der Borgskala und weist daraufhin, dass Vibrationstraining ein praktikables und sicheres Übungsprogramm für ältere Menschen ist und somit H4 bestätigt. Die Ergebnisse von S3 konnten H5 bestätigen, da die biomechanischen Variablen den neuromuskulären Rumpf- und Nackenmuskulatur unterschiedlich beeinflussen. Der höchste Grad der Aktivierung wurde deutlich mit einer großen Amplitude und hohen Frequenz erreicht, wobei der Kniewinkel sich ähnlich auf die VbL auswirkt. Der Vibrationsstimulus führte zudem zu einer höheren Aktivierung der unteren Rückenmuskulatur (27.2% MVC) als der Nacken- (8.5 % MVC) und Bauchmuskulatur (3.6 % MVC).
Schlussfolgerungen
Die maximale muskuläre Belastung älterer Personen in einem Vibrationstrainings hängt von bestimmten Kombinationen der biomechanischen Variablen (Vibrationsfrequenz, Vibrationsamplitude und Kniewinkel). Zudem ist ein Vibrationstraining, das auf altersspezifischen Vibrationsbelastungen basiert ein machbares, angemessenes und effektives Trainingsprogramm für älteren Menschen, um einem altersbedingten Abnehmen der muskulären Leistungsfähigkeit vorzubeugen. Weiterhin führt die Verbindung von biomechanischen Variablen, welche laut bisherigem Forschungsstand als sicher gegen schädliche Vibrationsübertragungen zum Kopf gelten, nur zu leichten bis moderaten Muskelaktivierung im Oberkörper. Die Ergebnisse dieser Dissertation liefern einen Beitrag zur Grundlagenforschung auf dem Gebiet des Vibrationstrainings und können weiteren Forschungsarbeiten hilfreich sein. Darüber hinaus kann diese Arbeit helfen die Qualität von Vibrationstrainingsangeboten zu verbessern und somit zum praktischen Nutzen beitragen.
|
2 |
Development and evaluation of recommendations for whole-body vibration training: aspects of vibration loads and training protocolsPerchthaler, Dennis 19 May 2015 (has links)
Background
Whole-body vibration (WBV) as a training modality is established in the fields of sport, fitness, rehabilitation, and clinical intervention. WBV exercises are performed thereby while standing on a motor driven oscillating platform device. Therefore, the scientific interest in WBV is a steadily increasing field in sports science and research. It has been shown that WBV training elicits various biological and physiological effects in men. Nevertheless, there are only a small number of studies examining WBV effects on neuromuscular performance of the lower extremities in elderly people. Furthermore, the results of these studies show many discrepancies that may be caused by limitations referring to the different applied training protocols and vibration loads. In addition, there is still a deficit of information for effective but safe recommendations for WBV application for trunk and neck muscles. Therefore, this doctoral thesis deals with three major aspects of WBV as an exercise modality in strength training: (1) the recommendation of optimal vibration loads (VbLs) for the lower extremities as an essential element of the WBV exercise parameters in older adults, (2) the evaluation of these VbLs in a WBV training intervention for elderly people with regard to feasibility and chronic effects on neuromuscular performance of the lower limbs, and (3) the allocation of information for effective but safe advices for VbLs for trunk and neck muscles. These aspects are further specified toward five hypotheses (H1, H2, H3, H4, and H5) by findings and limitations of the current state of literature.
Methods
The five hypotheses are evaluated within three research papers (studies 1 to 3). The first study (S1) evaluated the optimal VbL determined by the combination of three biomechanical variables (vibration frequency, vibration amplitude, and knee angle) in older adults (H1). Therefore, the neuromuscular activity of the quadriceps femoris and hamstring muscles in 51 healthy subjects were measured during WBV exposure using surface electromyography (EMG). Maximal voluntary contractions (MVCs) were conducted prior to the measurements to normalise the EMG signals. A three-way mixed ANOVA was performed to analyse the different effects of the biomechanical variables on muscle activity. Study 2 (S2) represents a randomised controlled trial to assess the results of S1 implemented in a WBV training protocol and therefore to evaluate the feasibility and effectiveness of a six-week WBV intervention (H2, H3, and H4). A total of 21 subjects was allocated randomly into either a WBV training or control group. While the WBV group completed a six-week WBV training programme the control group was asked not to change their current level of physical activity during the study. Before and after the intervention period, jump height was measured during a countermovement jump (CMJ). In addition, isokinetic knee extension and flexion strength parameters were recorded using a motor-driven dynamometer. The Borg scale for ratings of perceived exertion (RPE scale) was used to evaluate the intensity of WBV exercises within each training session. Changes from pre- to posttest were analysed by a paired sample t-test (within-group comparisons) and independent sample t-test (between-group comparisons). The intention of study 3 (S3) was to analyse the impact of biomechanical variables on neuromuscular activity of different trunk and neck muscles during WBV (H5) filling the lack of information in current literature. Those biomechanical variables were assumed, which current literature suggests as having the lowest risk of negative side effects on the head. Surface EMG was used to record the neuromuscular activity in 28 healthy subjects. EMG signals were normalised to prior measured MVC. Different effects of the biomechanical variables were analysed by an ANOVA for repeated measurements.
Results
The findings of S1 showed that the biomechanical variables affect the level of neuromuscular activity of thigh muscles in older adults in different dimensions which confirms H1. The maximum levels of muscle activity were significantly reached at high amplitude and high frequency, whereas the factor “knee angle” only significantly affected the quadriceps femoris. Furthermore, WBV led to a higher muscle activation of the quadriceps femoris (74.1 % MVC) than of the hamstring muscles (27.3 % MVC). The main findings in S2 were an increased multi-joint strength performance of the lower limbs during a countermovement jump in the WBV group, whereas values of the control group remained unchanged after the intervention, thus confirming H2. There were no statistically significant differences in isokinetic maximal strength, mean power, or work values in knee extension or flexion in both groups (rejecting H3). In addition, the subjective perceived exertion of the WBV exercises and respective training parameters ranged between moderate rating levels of 7 and 13 of the Borg scale and indicate WBV intervention as a feasible and safe training program for elderly people, which is consistent with H4. Finally, the outcomes of S3 confirmed H5 as the biomechanical variables affect the level of neuromuscular activity of the trunk and neck in different dimensions. The maximum levels of muscle activity were significantly reached at high amplitude and high frequency, while knee angles had similar effects on the VbL. WBV led to a higher muscle activation of the lower back muscles (27.2% MVC) than of neck muscles (8.5 % MVC) and the abdominal muscles (3.6 % MVC).
Conclusion
A maximised VbL for WBV training in older adults depends on specific combinations of the biomechanical variables (vibration frequency, vibration amplitude, and knee angle). In addition, a WBV training based on this age-specific high VbL is a feasible, suitable and effective training program for elderly people to prevent age-related reduction of muscle performance in the lower extremities. Furthermore, the combination of biomechanical variables recommended in literature as safe for preventing harmful transmissions to the head, only elicit low to moderate muscle activation of the upper body. The findings of this thesis represent fundamental research in the field of WBV and may help to improve further research in this area. Finally, this thesis may help coaches and therapists to enhance the quality of WBV training in practical application. / Hintergrund
Ganzkörpervibration (Whole-Body Vibration, WBV) hat sich als Trainingsanwendung im Sport-, Fitness, Rehabilitationsbereich und klinischen Bereich etabliert, wobei die Übungen dabei im Stehen auf einer Vibrationsplatte durchgeführt werden. In diesem Zusammenhang ist auch das wissenschaftliche Interesse am Vibrationstraining ein stetig wachsendes Feld in den Bereichen der Sportwissenschaft und Forschung. Bisher konnte gezeigt werden, dass Vibrationstraining verschiedene biologische als auch physiologische Reaktionen beim Menschen hervorruft. Dennoch gibt es nur wenige Untersuchungen, die sich mit den Auswirkungen des Vibrationstrainings auf die neuromuskuläre Leistung der unteren Extremitäten bei älteren Menschen beschäftigen. Des Weiteren weißen die Ergebnisse dieser wenigen Studien viele Widersprüchlichkeiten auf, welche durch die unterschiedlich verwendeten Trainingsvorgaben und Vibrationsbelastungen verursacht sein könnten. Darüber hinaus besteht noch ein großes Defizit an grundlegenden Informationen hinsichtlich effektiver, aber dennoch sicherer Vorgaben in der Anwendung des Vibrationstrainings im Bereich der Rumpf- und Nackenmuskulatur. Vor diesem Hintergrund beschäftigt sich die vorliegende Dissertation mit drei wesentlichen Aspekten des Vibrationstrainings: (1) die Empfehlung von optimalen Vibrationsbelastungen (VbL) als wesentlicher Bestandteil des Vibrationstrainingsplans der unteren Extremitäten älterer Menschen, (2) die Evaluierung dieser VbL anhand einer auf Vibrationstraining basierter Intervention mit älteren Menschen hinsichtlich Durchführbarkeit und Auswirkungen auf die neuromuskuläre Leistung der unteren Gliedmaßen, und (3) Angaben für effektive und sichere VbL für Rumpf- und Nackenmuskulatur bereitzustellen. Mit der Aufarbeitung von Ergebnissen und Defiziten des aktuellen Forschungsstands werden diese Aspekte durch die Formulierung von fünf Hypothesen (H1, H2, H3, H4, and H5) weiter spezifiziert.
Methodik
Die fünf Hypothesen werden in drei wissenschaftlichen Veröffentlichungen (Studie 1 bis 3) untersucht. Die erste Studie (S1) befasste sich mit der optimalen VbL für ältere Personen (H1), welche durch die Kombination von drei biomechanischen Variablen (Vibrationsfrequenz, Vibrationsamplitude und Kniewinkel) bestimmt wird. Hierzu wurde die neuromuskuläre Aktivität der vorderen und hinteren Oberschenkelmuskulatur von 51 gesunden Probanden unter Vibration mittels Oberflächen-Elektromyografie (EMG) gemessen. Vor den Messungen wurden maximale muskuläre Kontraktionen durchgeführt, um die EMG zu normalisieren. Um die unterschiedlichen Auswirkungen der biomechanischen Variablen zu analysieren wurde eine drei-faktorielle Varianzanalyse durchgeführt. Studie 2 (S2) entspricht einer randomisierten kontrollierten Studie, welche die Ergebnisse aus S1 in einem Trainingsplan verwendet, um die Durchführbarkeit und Effektivität eines sechs wöchigen Vibrationstrainings zu untersuchen (H2, H3, und H4). Hierfür wurden 21 Probanden zufällig einer Vibrationstrainings- oder einer Kontrollgruppe zugeteilt. Während die Vibrationsgruppe ein sechs wöchiges Vibrationstraining absolvierte, wurden die Teilnehmer der Kontrollgruppe gebeten ihre körperliche Aktivität während des Studienzeitraums nicht zu verändern. Vor und nach dem Untersuchungszeitraums wurde die Sprunghöhe während eines „countermovement jump“ (CMJ) erfasst. Weiterhin wurden isokinetische Kraftmessgrößen der Kniegelenkbeugung und –streckung an einem Dynamometer ermittelt. Die Borgskala zur Erfassung des subjektiven Belastungsempfindens wurde eingesetzt, um die Intensität der Übungen des Vibrationstrainings innerhalb einer Trainingseinheit zu messen. Veränderungen der Messgrößen zwischen Eingangs- und Abschlusstest wurden statistisch mit einem t-Test für abhängige (innerhalb einer Gruppe) und einem t-Test für unabhängige Stichproben (zwischen den Gruppen) untersucht. Ziel der dritten Studie (S3) war es den Einfluss der biomechanischen Variablen auf die muskuläre Aktivierung verschiedener Rumpf- und Nackenmuskeln (H5). Hierzu wurden solche biomechanische Variablen ausgesucht, welche laut derzeitigem Wissensstand jeweils das geringste Risiko von Nebenwirkungen für den Kopf ausüben. Mittels Oberflächen-EMG wurde die muskuläre Aktivität von 28 Probanden erfasst. EMG Signale wurden zu vorangegangenen MVC Messungen normalisiert. Die Unterschiedlichen Effekte der biomechanischen Variablen wurden mittels einer Varianzanalyse für Messwiederholungen analysiert.
Ergebnisse
Die Ergebnisse von S1 konnten zeigen, dass die biomechanischen Variablen den neuromuskulären Aktivierungsgrad der Oberschenkelmuskulatur bei älteren Personen unterschiedlich beeinflussen und somit H1 bestätigen. Der höchste Grad der Aktivierung wurde deutlich mit einer großen Amplitude und hohen Frequenz erreicht, wobei der Kniewinkel ausschließlich die vordere Oberschenkelmuskulatur beeinflusst. Zudem, führte der Vibrationseinfluss zu einer größeren Muskelaktivität der Oberschenkelvorderseite (74.1 % MVC) als der –rückseite (27.3 % MVC). Die Resultate von S2 hinsichtlich des CMJ Tests bestätigen H2, da es in der Vibrationstrainingsgruppe zu einer gesteigerten gelenksübergreifender Kraftleistung in den Beinen kam, aber keine Veränderungen in der Kontrollgruppe feststellbar waren. Hingegen kam es in keiner Gruppe zu statistisch signifikanten Veränderungen der isokinetischen Messgrößen (Maximalkraft, Kraftleistung, Muskelarbeit), wodurch H3 abgelehnt wird. Das subjektive Belastungsempfinden der Übungen und des Belastungsgefüges des Vibrationstrainings liegt zwischen moderaten Bewertungsstufen von 7 bis 13 der Borgskala und weist daraufhin, dass Vibrationstraining ein praktikables und sicheres Übungsprogramm für ältere Menschen ist und somit H4 bestätigt. Die Ergebnisse von S3 konnten H5 bestätigen, da die biomechanischen Variablen den neuromuskulären Rumpf- und Nackenmuskulatur unterschiedlich beeinflussen. Der höchste Grad der Aktivierung wurde deutlich mit einer großen Amplitude und hohen Frequenz erreicht, wobei der Kniewinkel sich ähnlich auf die VbL auswirkt. Der Vibrationsstimulus führte zudem zu einer höheren Aktivierung der unteren Rückenmuskulatur (27.2% MVC) als der Nacken- (8.5 % MVC) und Bauchmuskulatur (3.6 % MVC).
Schlussfolgerungen
Die maximale muskuläre Belastung älterer Personen in einem Vibrationstrainings hängt von bestimmten Kombinationen der biomechanischen Variablen (Vibrationsfrequenz, Vibrationsamplitude und Kniewinkel). Zudem ist ein Vibrationstraining, das auf altersspezifischen Vibrationsbelastungen basiert ein machbares, angemessenes und effektives Trainingsprogramm für älteren Menschen, um einem altersbedingten Abnehmen der muskulären Leistungsfähigkeit vorzubeugen. Weiterhin führt die Verbindung von biomechanischen Variablen, welche laut bisherigem Forschungsstand als sicher gegen schädliche Vibrationsübertragungen zum Kopf gelten, nur zu leichten bis moderaten Muskelaktivierung im Oberkörper. Die Ergebnisse dieser Dissertation liefern einen Beitrag zur Grundlagenforschung auf dem Gebiet des Vibrationstrainings und können weiteren Forschungsarbeiten hilfreich sein. Darüber hinaus kann diese Arbeit helfen die Qualität von Vibrationstrainingsangeboten zu verbessern und somit zum praktischen Nutzen beitragen.
|
Page generated in 0.1096 seconds