• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 189
  • 105
  • 50
  • 24
  • 10
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 511
  • 120
  • 111
  • 66
  • 58
  • 58
  • 51
  • 50
  • 45
  • 41
  • 37
  • 37
  • 35
  • 33
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

CARBON DIOXIDE GENERATION, TRANSPORT AND RELEASE DURING THE FERMENTATION OF BARLEY MALT

MacIntosh, Andrew John 21 November 2013 (has links)
Carbon Dioxide (CO2) is a major fermentation product generated during the production of beer, the subsequent release of this gas within the fermentor results in agitation that is necessary for sustained industrial fermentation. CO2 is sometimes monitored allowing brewers to stoichiometrically relate CO2 released to other products. In this manner the rate of gas release from the fermentor may be used to assess, control and predict other aspects of fermentation. The dynamics of CO2 generation, transport and release are explored throughout this thesis over several studies. The tools used to examine CO2 production were scrutinized including a miniature assay using various modeling techniques. A miniature scale fermentation assay included in the methods of the American Society of Brewing Chemists was compared to industrial scale fermentations. It was found that discrepancies were possibly due (at least in part) to fermentor geometry. Following this study, a literature review of CO2 solubility in aqueous sugar, and ethanol solutions was conducted. This study exposed previously undescribed inaccuracies in literature, i.e., it was found that several gas solubility tables were empirical derived and are therefore unlikely to accurately reflect all styles of beer. The next study scrutinized the consumption of sugars during barley fermentation and found that these fermentations often exhibit asymmetric sigmoidal attenuation. A five parameter logistic model was introduced to model this sugar consumption more accurately than previously described techniques. Using methods refined during the aforementioned studies, a fermentation was conducted where a mass balance was used to track all major fermentation parameters (the consumption of individual sugars, and the production of ethanol, carbon dioxide, yeast biomass and glycerol). This allowed an assessment of Balling’s theorem as compared to modern theory. It was shown that while accurate in predicting original extract, Balling’s theorem incorrectly quantified other fermentation parameters. This has large ramifications for both industry and research as the estimation of fermentation parameters (such as ethanol and fermentation time) is now better understood. From these studies, the production of beer becomes less of a “black box” operation, and CO2 saturation, transport and release can be better explained. Of the many fermentation aspects monitored during these studies, most were predicted by theory, however, there were notable exceptions. For instance, it was found that both the inhibition of maltose consumption and yeast sugar consumption dynamics (which remained relatively constant throughout the fermentation at ~ 50 pg·h-1 for cells with an average mass of ~ 40 pg). were found to deviate from previously described reports. These, and other findings improve our understanding of brewing fermentations allowing for additional applications of theory and recommendations in industrial operations.
92

Investigation of endocrine disrupting compounds in membrane bioreactor and UV processes

Yang, Wenbo 12 January 2010 (has links)
Endocrine disrupting compounds (EDCs) in the environment have recently emerged as a major issue in Canada and around the globe. The primary objective of this thesis was to investigate the fate of EDCs in two wastewater treatment processes, membrane bioreactors (MBRs) and ultraviolet (UV) disinfection. Two submerged MBR systems using hollow fiber membranes from two membrane manufacturers were tested. The results from a bench-scale and a pilot scale MBR for the treatment of swine wastewater with high concentration of EDCs showed that over 94% of the estrogenic activity (EA) in the influent was reduced through the MBR process. Biological degradation was the dominant removal mechanism for the removal of EDCs in MBRs. Over 85% of the influent EA was reduced by biodegradation through the MBR process. The other MBR system was built to study the removal mechanisms of two estrogens in a hybrid MBR with the addition of powdered activated carbon (PAC). The effects of PAC dosing on MBR overall performance was studied as well. It was found that PAC dosing could increase the removal rates of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) by 3.4% and 15.8%, respectively and result in a slower rate of trans-membrane pressure (TMP) increase during MBR operation, which could significantly reduce the operating cost for membrane cleaning and/or replacement. The operating cost for PAC dosing could be offset by the benefit achieved from reducing the cost for membrane maintenance. The slower rate of TMP increase in the PAC-MBR was associated with the lower concentrations of soluble extracellular polymeric substances and colloidal organic compounds in the PAC-MBR sludge. The degradation kinetics of three estrogens, estrone (E1), E2, and EE2 in de-ionized water by UV irradiation was studied. The experimental results showed both the apparent concentrations and overall EA of all three investigated estrogens in water decreased with direct UV irradiation. To further study the impact of UV on the overall EA of wastewater, the EA of pre-UV and post-UV samples from five wastewater treatment plants were measured in both liquid and solid phase by Yeast Estrogen Screen assay. It was found that the EA of wastewater decreased after UV disinfection in three of the investigated plants whereas it increased in the other two plants. This observation needs to be further studied because it might have significant impacts on the application of UV systems for wastewater disinfection.
93

Development of an Immobilized Nitrosomonas europaea Bioreactor for the Production of Methanol from Methane

Thorn, Garrick J. S. January 2006 (has links)
This research investigates a novel approach to methanol production from methane. The high use of fossil fuels in New Zealand and around the world causes global warming. Using clearer, renewable fuels the problem could potentially be reduced. Biomass energy is energy stored in organic matter such as plants and animals and is one of the options for a cleaner, renewable energy source. A common biofuel is methane that is produced by anaerobic digestion. Although methane is a good fuel, the energy is more accessible if it is converted to methanol. While technology exists to produce methanol from methane, these processes are thermo-chemical and require large scale production to be economic. Nitrosomonas europaea, a nitrifying bacterium, has been shown to oxidize methane to methanol (Hyman and Wood 1983). This research investigates the possibility of converting methane into methanol using immobilized N. europaea for use in smaller applications. A trickle bed bioreactor was developed, containing a pure culture of N. europaea immobilized in a biofilm on ceramic raschig rings. The reactor had a biomass concentration of 7.82 ± 0.43 g VSS/l. This was between 4 – 15 times higher than other systems aimed at biologically producing methanol. However, the immobilization dramatically affected the methanol production ability of the cells. Methanol was shown to be produced by the immobilized cells with a maximum production activity of 0.12 ± 0.08 mmol/gVSS.hr. This activity was much lower than the typical reported value of 1.0 mmol/g dry weight.hr (Hyman and Wood 1983). The maximum methanol concentration achieved in this system was 0.129 ± 0.102 mM, significantly lower than previous reported values, ranging between 0.6 mM and 2 mM (Chapman, Gostomski, and Thiele 2004). The results also showed that the addition of methane had an effect on the energy gaining metabolism (ammonia oxidation) of the bacteria, reducing the ammonia oxidation capacity by up to 70%. It was concluded, because of the low methanol production activity and the low methanol concentrations produced, that this system was not suitable for a methanol biosynthesis process.
94

Risk for P-deficiency and consequently ineffective bacteria performance in an Membrane BioReactor for Kalmarsund WWTP

Karlsson, Sara January 2014 (has links)
MBR, Membrane BioReactor, is a relatively new wastewater treatment technique using membrane filtration to separate particles from the biologically treated water. By means of analyzing analysis results from KARV, the existing wastewater treatment plant in Kalmar, from the recent six years and assuming that PO4-P in the water from the secondary settling tank equalizes with total effluent phosphorus in an MBR, the opportunity of an MBR to reach future effluent requirements could be assessed. The future effluent requirement for phosphorus is expected to be 0.2 mg/L or 0.1 mg/L. Today the phosphorus effluent requirement in Kalmar is 0.3 mg/L total phosphorus as annual average. Results from data analysis presented in figures shows that with the same operation strategy as during the six evaluated years, the future requirements would not be reached. Phosphorus is essential for yield and performance of biomass in the biological treatment step. The starting position for the work is that the way of operation during the six recent years would have given exactly the right amount of P to the bacteria in the biological treatment step. An increased dose of chemicals for phosphorus removal could lead to P-deficiency in the biological treatment step and thus decreased efficiency. This effect could be an essential aspect in the design of a future MBR in Kalmar.
95

Investigation of endocrine disrupting compounds in membrane bioreactor and UV processes

Yang, Wenbo 12 January 2010 (has links)
Endocrine disrupting compounds (EDCs) in the environment have recently emerged as a major issue in Canada and around the globe. The primary objective of this thesis was to investigate the fate of EDCs in two wastewater treatment processes, membrane bioreactors (MBRs) and ultraviolet (UV) disinfection. Two submerged MBR systems using hollow fiber membranes from two membrane manufacturers were tested. The results from a bench-scale and a pilot scale MBR for the treatment of swine wastewater with high concentration of EDCs showed that over 94% of the estrogenic activity (EA) in the influent was reduced through the MBR process. Biological degradation was the dominant removal mechanism for the removal of EDCs in MBRs. Over 85% of the influent EA was reduced by biodegradation through the MBR process. The other MBR system was built to study the removal mechanisms of two estrogens in a hybrid MBR with the addition of powdered activated carbon (PAC). The effects of PAC dosing on MBR overall performance was studied as well. It was found that PAC dosing could increase the removal rates of 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) by 3.4% and 15.8%, respectively and result in a slower rate of trans-membrane pressure (TMP) increase during MBR operation, which could significantly reduce the operating cost for membrane cleaning and/or replacement. The operating cost for PAC dosing could be offset by the benefit achieved from reducing the cost for membrane maintenance. The slower rate of TMP increase in the PAC-MBR was associated with the lower concentrations of soluble extracellular polymeric substances and colloidal organic compounds in the PAC-MBR sludge. The degradation kinetics of three estrogens, estrone (E1), E2, and EE2 in de-ionized water by UV irradiation was studied. The experimental results showed both the apparent concentrations and overall EA of all three investigated estrogens in water decreased with direct UV irradiation. To further study the impact of UV on the overall EA of wastewater, the EA of pre-UV and post-UV samples from five wastewater treatment plants were measured in both liquid and solid phase by Yeast Estrogen Screen assay. It was found that the EA of wastewater decreased after UV disinfection in three of the investigated plants whereas it increased in the other two plants. This observation needs to be further studied because it might have significant impacts on the application of UV systems for wastewater disinfection.
96

In vitro production of human hyaline cartilage using tissue engineering

Shahin, Kifah, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2008 (has links)
Articular cartilage disorders are a leading cause of human disability in many countries around the world. In this work, new techniques and strategies were developed to improve the quality of cartilage produced in vitro by methods of tissue engineering. Chondrocytes were isolated from the hip and knee joints of aborted human foetuses. The cells were expanded and seeded into scaffolds and the seeded scaffolds were cultured in perfusion bioreactors. The quality of the final cartilage constructs was assessed biochemically by measuring their content of glycosaminoglycan (GAG), total collagen and collagen type II and histologically by staining cross-sections of the constructs for GAG, collagen type I and collagen type II. The amount of proteoglycan released in the culture medium was also measured at regular intervals. Proteoglycans from tissue-engineered cartilage and spent culture medium were compared and analysed for degradation and capability of aggregation. During monolayer expansion, the chondrocyte differentiation indices decreased, the cell size increased and the percentage of cells present in G2/S??M phase decreased with the greatest changes occurring during the first passage. Expanding chondrocytes in PGA or PGA??alginate scaffolds produced cells with a higher level of differentiation than monolayer-expanded cells. However, PGA and PGA??alginate could not be justified as suitable systems for the routine expansion of chondrocytes mainly because of the relatively low cell proliferation obtained. Two new methods for seeding of cells into scaffolds were investigated using PGA and PGA??alginate as scaffold materials. Both methods produced high seeding efficiencies and homogeneous distribution of cells. When seeded PGA??alginate scaffolds were cultured in perfusion bioreactors, they produced good quality constructs with higher concentrations of extracellular matrix (ECM) components compared with previously described methods. However, when seeded PGA scaffolds were cultured in perfusion bioreactors, they produced small constructs of poor quality. Investigation of the effect of medium flow rate on the PGA scaffolds showed that a low flow rate was needed at the beginning of the culture to enable the cells to form a framework onto which other synthesised elements could deposit. Applying a gradual increase in medium flow rate to PGA scaffolds cultured in perfusion bioreactors solved the shrinkage problem and produced constructs with quality similar to those produced using PGA??alginate scaffolds. A novel compression bioreactor that mimicked the physiological stimulation of cartilage by joint movement was constructed. Using this bioreactor, compressed constructs showed significantly higher wet weight and higher concentrations of GAG, total collagen and collagen type II compared with non-compressed constructs.
97

Production and differentiation of a vascular graft grown in the host’s peritoneal cavity: devices and bioreactors

Peter Stickler Unknown Date (has links)
The main question that this thesis addresses is what is the optimal way of producing tissue grown in the peritoneal cavity around a foreign body for its use as a vascular graft? It is known that a foreign body implanted into the peritoneal cavity induces an inflammatory response with cells recruited from within the peritoneal cavity to encapsulate the foreign body. Over the course of two to three weeks these cells produce an organised matrix and differentiate to become myofibroblasts. Tubes of these ‗tissue capsules‘ have been transplanted into the arterial vasculature in several animal models where the tissue capsule differentiates into an arterial structure. This structure consists of a layer of smooth muscle-like cells, adventitia of dense connective tissue including vasa-vasorum and an endothelial layer of flattened mesothelial cells. In order to determine whether the tissue would further differentiate ex vivo in response to mechanical stimulus an in-vitro bioreactor system was built to house tissue capsules produced in a variety of animal models. This bioreactor system could house 4 tissue capsules under physiological conditions including standard pulse rates, pressures and temperatures experienced by an artery. Boiled blood clot (BBC) scaffolds were implanted into the peritoneal cavity of rats to produce tissue capsules. After two weeks of development in the peritoneal cavity, tissue capsules were harvested and implanted into the bioreactor. Tissue capsules grafted into the bioreactor were subjected to mechanical force for a range of time-points, pressure, pulse and flow rates. When analysing tissue immunohistochemically, elastin, myosin, αSMA and desmin were detected. This staining was not consistent across all samples and only present in small parts of some tissue tested. Western analysis did not show any expression of αSMA or myosin. Finally the morphology of the tissue also resembled that of tissue previously implanted into the arterial circulation, but development of mechanical properties were not to the extent that would make the tissue useful as a vascular graft. The bioreactor system was thus modified to be able to house tissue for a period of 3 weeks. This system successfully housed tissue capsules under mechanical force in physiological ranges. Next, a range of materials were tested for their ability to be included into the peritoneal implant device used for the large animal model. Elasteon 80A did not produce any cellular growth or peritoneal pathology in all implanted samples (n = 4). Cloisite, a pro-inflammatory material produced large tissue capsule development over a 2 week implant period in 25% of samples however this tissue was heavily adhered to the greater omentum and dependent on its vascular supply. This data suggested that Elasteon could be used to coat the outer surface of a peritoneal implant device to decrease the rate of peritoneal adhesions. Three devices were designed and fabricated for their use in generating tissue for the modified Mitrofanoff procedure which requires a length of tissue to be implanted between the umbilicus and the bladder as a fistula. In all three cases no implantable material was produced that could be used for this procedure. To modify the device that could be used to produce tissue for any surgical application, a range of devices was produced and the animal model was changed to pigs. Materials incorporated into these devices include Dexon mesh and polyethylene. These devices also did not produce any tissue that could possibly be used as a vascular graft. A novel material, polymer BD347 was then produced for use in developing tissue within the interior of the device to provide greater growth and mechanical properties for developing a vascular graft. In toxicological studies, the replacement rate of cells was unaffected after seven days of incubation of fibroblasts at confluence with the polymer. A range of mechanical properties from pig vasculature was gained so that a sheet of polymer with similar properties to that of a vascular graft could be made. This polymer was fabricated as a tube and implanted into the peritoneal cavity of rats. The implanted polymer remained free-floating with a capsule of tissue in 78% of cases. A device was designed that has the ability to impart a physiological pulsation force on the developing tissue capsule in the peritoneal cavity using a sheep model. When two devices were implanted for a period of 10 days in each animal these devices produced no complications for the animal. Upon harvest all devices were free of adhesion and did not cause any peritoneal or dermal infection. In 100% of cases this device produced tissue that was thick and consistent along the length of the implant. The quality of tissue differed greatly macroscopically between tissue produced around pulsing and non-pulsing scaffolds, but microscopically the structure of both tissues was not significantly different. Approximately 90% of cells in this tissue stained positively for CD45. Tissue in pulsing devices produced a higher amount of vimentin expression in CD45 positive staining cells than tissue in non-pulsing devices. Mechanical properties of tissue in pulsed devices were also much greater than tissue in non-pulsed devices. Two of the pulsed tissues were grafted into the carotid artery of sheep as arterial patches. In one animal tissue lasted a period of 1 week before it ruptured. In the second animal tissue lasted a period of 2 weeks at which time the animal was sacrificed. In this sheep a layer of endothelial cells had migrated to populate areas of the tissue patch. Pulsation of the implant device enhanced the development of tissue capsule in the peritoneal cavity towards arterial properties. These studies provide information on the materials and designs required to produce peritoneal-derived tissue capsules that can be used in a range of surgical applications. These studies also provide information on how this tissue responds to mechanical force and provides an in vitro system for testing this tissue. This work in this thesis has produced a device that is in the stage of pre-clinical development to be used as a potential therapy for cardiovascular disease. This device is a novel development from previous devices used for generating tissue capsules for engraftment and is a significant contribution to work in developing a replacement artery.
98

Interpreting Residence Time Distributions in Water Treatment Systems

Jansons, Ketah Unknown Date (has links)
This thesis establishes residence time distribution (RTD) as a key tool for the investigation of water treatment systems. RTD software for tracer data modelling and interpretation is developed and validated for problem solving purposes in water treatment systems. The technique focuses on the systematic interpretation of RTD data using a tanks-in-series based model and an indicator, flushing time (tf ). This approach removes the subjectivity often associated with RTD interpretation and is tested extensively using experimental and numerical data. The influence of design elements, intended to enhance hydraulic efficiency, is also addressed. For this purpose, both numerical modelling (Mike 21) and the proposed approach are employed. Results reveal that the interpretive provides valuable information, facilitating a greater understanding of the hydraulic effects of changes to geometry and inlet/outlet configuration than other techniques alone. The approach was shown to be particularly successful at interpreting RTD curves from stormwater treatment systems due to their susceptibility to stagnation. However, it was shown to have limited applicability in systems with complex flow characteristics (such as large bioreactor vessels) or those susceptible to extensive short-circuiting. The approach was also found to be unsuitable for evaluating the impact of deviations from ideal flow on pollutant removal in systems governed by complex biokinetic reactions.
99

In vitro production of human hyaline cartilage using tissue engineering

Shahin, Kifah, Biotechnology & Biomolecular Sciences, Faculty of Science, UNSW January 2008 (has links)
Articular cartilage disorders are a leading cause of human disability in many countries around the world. In this work, new techniques and strategies were developed to improve the quality of cartilage produced in vitro by methods of tissue engineering. Chondrocytes were isolated from the hip and knee joints of aborted human foetuses. The cells were expanded and seeded into scaffolds and the seeded scaffolds were cultured in perfusion bioreactors. The quality of the final cartilage constructs was assessed biochemically by measuring their content of glycosaminoglycan (GAG), total collagen and collagen type II and histologically by staining cross-sections of the constructs for GAG, collagen type I and collagen type II. The amount of proteoglycan released in the culture medium was also measured at regular intervals. Proteoglycans from tissue-engineered cartilage and spent culture medium were compared and analysed for degradation and capability of aggregation. During monolayer expansion, the chondrocyte differentiation indices decreased, the cell size increased and the percentage of cells present in G2/S??M phase decreased with the greatest changes occurring during the first passage. Expanding chondrocytes in PGA or PGA??alginate scaffolds produced cells with a higher level of differentiation than monolayer-expanded cells. However, PGA and PGA??alginate could not be justified as suitable systems for the routine expansion of chondrocytes mainly because of the relatively low cell proliferation obtained. Two new methods for seeding of cells into scaffolds were investigated using PGA and PGA??alginate as scaffold materials. Both methods produced high seeding efficiencies and homogeneous distribution of cells. When seeded PGA??alginate scaffolds were cultured in perfusion bioreactors, they produced good quality constructs with higher concentrations of extracellular matrix (ECM) components compared with previously described methods. However, when seeded PGA scaffolds were cultured in perfusion bioreactors, they produced small constructs of poor quality. Investigation of the effect of medium flow rate on the PGA scaffolds showed that a low flow rate was needed at the beginning of the culture to enable the cells to form a framework onto which other synthesised elements could deposit. Applying a gradual increase in medium flow rate to PGA scaffolds cultured in perfusion bioreactors solved the shrinkage problem and produced constructs with quality similar to those produced using PGA??alginate scaffolds. A novel compression bioreactor that mimicked the physiological stimulation of cartilage by joint movement was constructed. Using this bioreactor, compressed constructs showed significantly higher wet weight and higher concentrations of GAG, total collagen and collagen type II compared with non-compressed constructs.
100

Instrumented permeable blankets for estimating subsurface hydraulic conductivity and confirming numerical models used for subsurface liquid injection

Mukherjee, Moumita. January 2008 (has links)
Thesis (PH. D.)--Michigan State University. Civil Engineering, 2008. / Title from PDF t.p. (viewed on Sept. 2, 2009) Includes bibliographical references (p. 267-278). Also issued in print.

Page generated in 0.0784 seconds