• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 2
  • Tagged with
  • 9
  • 9
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A study of tailoring acoustic porous material properties when designing lightweight multilayered vehicle panels

Lind Nordgren, Eleonora January 2012 (has links)
The present work explores the possibilities of adapting poro-elastic lightweight acoustic materials to specific applications. More explicitly, a design approach is presented where finite element based numerical simulations are combined with optimization techniques to improve the dynamic and acoustic properties of lightweight multilayered panels containing poro-elastic acoustic materials. The numerical models are based on Biot theory which uses equivalent fluid/solid models with macroscopic space averaged material properties to describe the physical behaviour of poro-elastic materials. To systematically identify and compare specific beneficial or unfavourable material properties, the numerical model is connected to a gradient based optimizer. As the macroscopic material parameters used in Biot theory are interrelated, they are not suitable to be used as independent design variables. Instead scaling laws are applied to connect macroscopic material properties to the underlying microscopic geometrical properties that may be altered independently. The design approach is also combined with a structural sandwich panel mass optimization, to examine possible ways to handle the, sometimes contradicting, structural and acoustic demands. By carefully balancing structural and acoustic components, synergetic rather than contradictive effects could be achieved, resulting in multifunctional panels; hopefully making additional acoustic treatment, which may otherwise undo major parts of the weight reduction, redundant. The results indicate a significant potential to improve the dynamic and acoustic properties of multilayered panels with a minimum of added weight and volume. The developed modelling techniques could also be implemented in future computer based design tools for lightweight vehicle panels. This would possibly enable efficient mass reduction while limiting or, perhaps, totally avoiding the negative impact on sound and vibration properties that is, otherwise, a common side effect of reducing weight, thus helping to achieve lighter and more energy efficient vehicles in the future. / <p>QC 20120815</p>
2

A study of tailoring acoustic porous material properties when designing lightweight multilayered vehicle panels

Nordgren, Eleonora 07 September 2012 (has links) (PDF)
The present work explores the possibilities of adapting poro-elastic lightweight acoustic materials to specific applications. More explicitly, a design approach is presented where finite element based numerical simulations are combined with optimization techniques to improve the dynamic and acoustic properties of lightweight multilayered panels containing poro-elastic acoustic materials.The numerical models are based on Biot theory which uses equivalent fluid/solid models with macroscopic space averaged material properties to describe the physical behaviour of poro-elastic materials. To systematically identify and compare specific beneficial or unfavourable material properties, the numerical model is connected to a gradient based optimizer. As the macroscopic material parameters used in Biot theory are interrelated, they are not suitable to be used as independent design variables. Instead scaling laws are applied to connect macroscopic material properties to the underlying microscopic geometrical properties that may be altered independently.The design approach is also combined with a structural sandwich panel mass optimization, to examine possible ways to handle the, sometimes contradicting, structural and acoustic demands. By carefully balancing structural and acoustic components, synergetic rather than contradictive effects could be achieved, resulting in multifunctional panels; hopefully making additional acoustic treatment, which may otherwise undo major parts of the weight reduction, redundant.The results indicate a significant potential to improve the dynamic and acoustic properties of multilayered panels with a minimum of added weight and volume. The developed modelling techniques could also be implemented in future computer based design tools for lightweight vehicle panels. This would possibly enable efficient mass reduction while limiting or, perhaps, totally avoiding the negative impact on sound and vibration properties that is, otherwise, a common side effect of reducing weight, thus helping to achieve lighter and more energy efficient vehicles in the future.
3

On the use of the finite element method for the modeling of acoustic scattering from one-dimensional rough fluid-poroelastic interfaces

Bonomo, Anthony Lucas 02 October 2014 (has links)
A poroelastic finite element formulation originally derived for modeling porous absorbing material in air is adapted to the problem of acoustic scattering from a poroelastic seafloor with a one-dimensional randomly rough interface. The developed formulation is verified through calculation of the plane wave reflection coefficient for the case of a flat surface and comparison with the well known analytical solution. The scattering strengths are then obtained for two different sets of material properties and roughness parameters using a Monte Carlo approach. These numerical results are compared with those given by three analytic scattering models---perturbation theory, the Kirchhoff approximation, and the small-slope approximation---and from those calculated using two finite element formulations where the sediment is modeled as an acoustic fluid. / text
4

Statistical energy analysis and variational principles for the prediction of sound transmission in multilayered structures

Barbagallo, Mathias January 2013 (has links)
Multilayered structures have many application in industry and society: they have peculiar properties and serve a variety of purposes, like structural support, thermal insulation, vibrational and acoustic isolation. This thesis concerns the prediction of sound transmission in multilayered structures. Two problems are herein investigated: the transmission of energy through structures and the transmission of energy along structures. The focus of the analysis is on the mid to high frequency range. To predict sound transmission in these structures, statistical energy analysis (SEA) is used.SEA models are devised for the prediction of the sound reduction index for two kinds of multilayered structures, double-walls used in buildings and trim-panels in vehicles; the double-walls comprise an air cavity in between flat plasterboard or glass plates, whereas the trim-panels a porous layer in between curved aluminium and rubber layers. The SEA models are based upon the wave-types carrying energy. The novelty in these SEAs is an element describing the waves in the air cavity, or in the porous layer, fully coupled to the mass-impeded external layers. Compared to measurements, the proposed SEA performs well: for double-walls, it performs better than previous models; for trim-panels, it is an original result. The parameters of the new SEA element, such as modal density, are derived from the coupling equations describing the fully coupled waves. For double-walls, these equations are derived via Newton's laws. For trim-panels, a variational approach based upon a modified Hamilton's principle valid for non-conservative systems is preferred, because it is a powerful machinery for deriving equations of motion and coupling conditions of a medium as complex as the porous layer. The modified Hamilton's principle for non-conservative systems is based upon a self-adjoint functional analogous to the Lagrangian, inspired by Morse and Feshbach's construction. A self-adjoint variational principle for Biot's equations in the displacement formulation is devised. An equivalent mixed formulation is obtained changing the coordinates of the displacement formulation via Lagrange multipliers. From this mixed formulation, the Lagrangian for a porous material with a limp frame is derived, which yields the continuity of the total displacement of the porous layer. Lagrange multipliers help to obtain the correct coupling functionals between a porous material and a solid. The Lagrange multipliers introducing the continuity of the frame and the solid displacements equal the traction of the in-vacuo frame, thus disappearing if the latter is limp. Measurements to gather material parameters for a Biot model of the porous layer have been conducted.The effects of spatial energy decay in the transmission along structures predicted by SEA is studied: a major effect is the increased relevance of indirect coupling loss factors between SEA elements. This may jeopardize the usefulness of SEA at higher frequencies. / <p>QC 20130218</p>
5

A study of tailoring acoustic porous material properties when designing lightweight multilayered vehicle panels / Détermination des propriétés de matériaux poreux acoustiques en vue de la conception de panneaux multicouches légers

Lind Nordgren, Eleonora 07 September 2012 (has links)
Le présent travail explore la possibilité d'adapter des matériaux poro-élastiques légers pour des applications spécifiques. En particulier, une approche de conception est présentée, combinant simulations par la méthodes des éléments finis et techniques d'optimisation, permettant ainsi d'améliorer les propriétés dynamiques et acoustiques de panneaux multicouches comprenant des matériaux poreux.Les modèles numériques sont fondés sur la théorie de Biot qui utilise des modèles équivalents fluide/solide avec des propriétés macroscopiques spatialement homogénéisées, décrivant le comportement physique des matériaux poro-élastiques. Afin de systématiquement identifier et comparer certaines propriétés spécifiques, bénéfiques ou défavorables, le modèle numérique est connecté à un optimiseur fondé sur les gradients. Les paramètres macroscopiques utilisés dans la théorie de Biot étant liés, il ne peuvent être utilisés comme variables indépendantes. Par conséquent, des lois d'échelle sont appliquées afin de connecter les propriétés macroscopiques du matériau aux propriétés géométriques microscopiques, qui elles peuvent être modifiées indépendamment.L'approche de conception est également combinée avec l'optimisation de la masse d'un panneau sandwich structure, afin d'examiner les possibilités de combiner exigences structurelles et acoustiques, qui peuvent être en conflit. En prenant le soin d'établir un équilibre entre composantes acoustiques et structurelles, des effets de synergie plutôt que destructifs peuvent être obtenus, donnant lieu à des panneaux multifonctionnels. Cela pourrait rendre l'ajout de traitements acoustiques redondant, qui par ailleurs annulerait tout ou partie du gain en masse obtenu par optimisation.Les résultats indiquent un véritable potentiel d'amélioration des propriétés dynamiques et acoustiques de panneaux multi-couches, pour un ajout minimum en termes de masse et volume. La technique de modélisation développée pourrait également être implémentée au sein d'outils numériques futures pour la conception de panneaux légers de véhicules. Cela aurait le potentiel de réduire substantiellement la masse tout en limitant, voire supprimant l'impact négatif sur les propriétés acoustiques et vibratoires, pourtant une conséquence courante de la réduction de la masse, participant ainsi à l'effort de développement de véhicules futures plus légers et efficaces. / The present work explores the possibilities of adapting poro-elastic lightweight acoustic materials to specific applications. More explicitly, a design approach is presented where finite element based numerical simulations are combined with optimization techniques to improve the dynamic and acoustic properties of lightweight multilayered panels containing poro-elastic acoustic materials.The numerical models are based on Biot theory which uses equivalent fluid/solid models with macroscopic space averaged material properties to describe the physical behaviour of poro-elastic materials. To systematically identify and compare specific beneficial or unfavourable material properties, the numerical model is connected to a gradient based optimizer. As the macroscopic material parameters used in Biot theory are interrelated, they are not suitable to be used as independent design variables. Instead scaling laws are applied to connect macroscopic material properties to the underlying microscopic geometrical properties that may be altered independently.The design approach is also combined with a structural sandwich panel mass optimization, to examine possible ways to handle the, sometimes contradicting, structural and acoustic demands. By carefully balancing structural and acoustic components, synergetic rather than contradictive effects could be achieved, resulting in multifunctional panels; hopefully making additional acoustic treatment, which may otherwise undo major parts of the weight reduction, redundant.The results indicate a significant potential to improve the dynamic and acoustic properties of multilayered panels with a minimum of added weight and volume. The developed modelling techniques could also be implemented in future computer based design tools for lightweight vehicle panels. This would possibly enable efficient mass reduction while limiting or, perhaps, totally avoiding the negative impact on sound and vibration properties that is, otherwise, a common side effect of reducing weight, thus helping to achieve lighter and more energy efficient vehicles in the future.
6

Atténuation et dispersion des ondes P en milieu poreux partiellement saturé : approche expérimentale / Attenuation and dispersion of P-wave in partially saturated porous medium : an experimental approach

Barrière, Julien 16 December 2011 (has links)
Afin d'analyser le rôle de la saturation partielle sur la vitesse de phase et l'atténuation des ondes P directes, nous avons élaboré une expérience en laboratoire dans la gamme du kiloHertz. Celle-ci permet une corrélation avec les mesures de terrain et limite les effets d'échelle induits par l'utilisation des traditionnelles mesures ultrasoniques. Le montage expérimental est composé d'un container rempli de sable, équipé d'accéléromètres et de sondes de teneur en eau. Une propagation d'onde est générée par une source mécanique constituée d'une bille en métal frappant une plaque de granite. Plusieurs cycles d'imbibition/drainage sont réalisés entre les saturations résiduelles en eau et en air. Une transformée continue en ondelette a été choisie pour le traitement des données sismiques et validée numériquement par une simulation de propagation d'ondes dans un milieu viscoélastique 2D (code Specfem2D). En imbibition et en drainage, la vitesse de phase décroît avec l'augmentation de la saturation, ce qui peut être expliqué par la limite Biot-Gassmann-Wood (BGW) de la théorie de Biot. Ce comportement, typique des mesures de terrain, indique qu'il est possible de considérer le mélange de fluides (eau et air) comme un fluide effectif. L'interprétation de l'atténuation est plus complexe et ne peut être expliquée par le mécanisme de relaxation de flux macroscopique de la théorie de Biot. Il est nécessaire d'introduire une contribution viscoélastique reliée aux pertes frictionelles grain-à-grain et décrite par un modèle à Q constant. De plus, un hystérésis entre imbibition et drainage est observé et expliqué en introduisant une perméabilité effective du mélange, dépendante des perméabilités relatives à l'eau et à l'air. / In order to analyse the role of partial saturation on direct P-waves phase velocity and attenuation, we performed a laboratory experiment in the kiloHertz range to avoid scale effects between field studies and traditional ultrasonic laboratory measurements. This experiment consists in a sand-filled tank equiped with accelerometers and water capacitance probes, were seismic propagation is generated by hitting a steel ball on a granite plate. Several imbibition/drainage cycles were performed between the water and gas residual saturations. Seismic data were processed by a Continuous Wavelet Transform using the complex Morlet wavelet which was numerically validated using a viscoelastic 2D code for wave propagation (Specfem2D). Phase velocity of direct P-wave decreases with the increase of water content, which is quite consistent with Biot-Gassmann-Wood (BGW) limit of the Biot's theory for both imbibition and drainage. This behaviour indicates that the fluid mixture (gaz and water) can be considered as an effective fluid, which is typical of field seismic applications. In this experiment, attenuation is very strong and cannot be fully explained by the macroscopic fluid flow of Biot's theory. It is necessary to introduce a viscoelastic contribution linked to the grain to grain overall losses, which are described by a constant Q-model. Moreover, hysteresis between imbibition and drainage are observed and explained by introducing an effective permeability of the mixture depending on water and gas relative permeabilities.
7

Étude des matériaux poreux thermo compressés pour la modélisation des écrans acoustiques automobiles / Study of thermocompressed porous materials for the modeling of automotive acoustic shields

Lei, Lei 06 July 2018 (has links)
Ce travail a été réalisé dans le cadre du projet EcOBEx, qui consiste à réduire le bruit du groupe motopropulseur rayonné à l'extérieur par l'ajout d'écrans acoustiques dans le compartiment moteur du véhicule. Les écrans acoustiques sont fabriqués par thermocompression de matériaux poreux uniformes. Les propriétés et l'épaisseur du matériau évoluent en fonction du degré de compression subit par le matériau. L'objectif de ce travail est de proposer des lois pour prédire l'évolution des propriétés des matériaux à partir du taux de compression et de leurs valeurs initiales avant compression. Dans un premier temps, on s'intéresse aux paramètres du modèle de fluide équivalent de Johnson-Champoux-Allard-Lafarge (JCAL) : porosité, résistivité au passage d'air, tortuosité, longueurs caractéristiques visqueuse et thermique, perméabilité thermique statique. Des expressions analytiques sont proposées pour prédire la variation de ces paramètres en fonction de la compression. Elles sont développées à partir d'un modèle de matériaux fibreux à fibres cylindriques où les variations d'orientation des fibres induites par la thermocompression peuvent être prises en compte. Les résultats sont en bon accord avec les mesures effectuées sur deux types de matériaux (mousse à cellules ouvertes et fibreux). Un modèle empirique généralisé est finalement proposé pour la résistivité au passage d'air. Dans un deuxième temps, on s'attache aux paramètres élastiques dont la connaissance est essentielle pour prendre en compte la vibration du squelette. La méthode expérimentale quasistatique est d'abord appliquée pour étudier l'évolution du module de Young par rapport au taux de compression pour les fibres et les mousses. Une loi de puissance est alors proposée pour prédire ces variations. Enfin, une méthode inverse pour estimer les propriétés élastiques d'un matériau poroélastique orthotrope à partir d'une mesure vibratoire d'un écran tricouche thermo comprimé est proposée. Cette méthode permet de caractériser les propriétés élastiques du matériau poreux dans une situation proche de son application réelle / This work was carried out in the framework of the project EcOBEx, whose main objective was to reduce the passby noise by mean of acoustic shields in the engine compartment of the vehicle. The acoustic shields are manufactured by thermocompression of uniform porous materials. The material’s properties and thickness evolve according to the degree of compression experienced by the material. The objective of this work is to propose some laws to predict the evolution of the materials properties from their initial non compressed values and the compression rate. Firstly, we focus on the parameters of the Johnson-Champoux-Allard-Lafarge (JCAL) equivalent fluid model : porosity, air-flow resistivity, tortuosity, viscous characteristic lengths, thermal characteristic length, static thermal permeability. Some analytical expressions are proposed to predict the variation of these parameters as a function of compression. They are derived from a physical model of cylindrical fibres where the fibre orientation variations induced by the thermocompression can be taken into account. The results are in good agreement with the measurements made two types of materials (open cell foam and fibrous). A generalized empirical model is finally proposed for the air-flow resistivity.In a second part, we focus on the elastic parameters, which are necessary to take into account the vibration of the skeleton. The quasi-static experimental method is first applied to study the evolution of the Young’s modulus along the compression rate for fibrous and open cell foams. A power law is then proposed to predict these variations. Finally, an inverse method for estimating the elastic properties of an orthotropic poro-elastic material from a vibratory measurement of a thermocompressed three layer sandwich structure is proposed. This method allows us to characterize the elastic properties of a porous material in a situation close to its actual application.
8

Wave-Associated Seabed Behaviour near Submarine Buried Pipelines

Shabani, Behnam January 2008 (has links)
Master of Engineering (Research) / Soil surrounding a submarine buried pipeline consolidates as ocean waves propagate over the seabed surface. Conventional models for the analysis of soil behaviour near the pipeline assume a two-dimensional interaction problem between waves, the seabed soil, and the structure. In other words, it is often considered that water waves travel normal to the orientation of pipeline. However, the real ocean environment is three-dimensional and waves approach the structure from various directions. It is therefore the key objective of the present research to study the seabed behaviour in the vicinity of marine pipelines from a three-dimensional point of view. A three-dimensional numerical model is developed based on the Finite Element Method to analyse the so-called momentary behaviour of soil under the wave loading. In this model, the pipeline is assumed to be rigid and anchored within a rigid impervious trench. A non-slip condition is considered to exist between the pipe and the surrounding soil. Quasi-static soil consolidation equations are then solved with the aid of the proposed FE model. In this analysis, the seabed behaviour is assumed to be linear elastic with the soil strains remaining small. The influence of wave obliquity on seabed responses, i.e. the pore pressure and soil stresses, are then studied. It is revealed that three-dimensional characteristics systematically affect the distribution of soil response around the circumference of the underwater pipeline. Numerical results suggest that the effect of wave obliquity on soil responses can be explained through the following two mechanisms: (i) geometry-based three-dimensional influences, and (ii) the formation of inversion nodes. Further, a parametric study is carried out to investigate the influence of soil, wave and pipeline properties on wave-associated pore pressure as well as principal effective and shear stresses within the porous bed, with the aid of proposed three-dimensional model. There is strong evidence in the literature that the failure of marine pipelines often stems from the instability of seabed soil close to this structure, rather than from construction deficiencies. The wave-induced seabed instability is either associated with the soil shear failure or the seabed liquefaction. Therefore, the developed three-dimensional FE model is used in this thesis to further investigate the instability of seabed soil in the presence of a pipeline. The widely-accepted criterion, which links the soil liquefaction to the wave-induced excess pressure is used herein to justify the seabed liquefaction. It should be pointed out that although the present analysis is only concerned with the momentary liquefaction of seabed soil, this study forms the basis for the three-dimensional analysis of liquefaction due to the residual mechanisms. The latter can be an important subject for future investigations. At the same time, a new concept is developed in this thesis to apply the dynamic component of soil stress angle to address the phenomenon of wave-associated soil shear failure. At this point, the influence of three-dimensionality on the potentials for seabed liquefaction and shear failure around the pipeline is investigated. Numerical simulations reveal that the wave obliquity may not notably affect the risk of liquefaction near the underwater pipeline. But, it significantly influences the potential for soil shear failure. Finally, the thesis proceeds to a parametric study on effects of wave, soil and pipeline characteristics on excess pore pressure and stress angle in the vicinity of the structure.
9

Wave-Associated Seabed Behaviour near Submarine Buried Pipelines

Shabani, Behnam January 2008 (has links)
Master of Engineering (Research) / Soil surrounding a submarine buried pipeline consolidates as ocean waves propagate over the seabed surface. Conventional models for the analysis of soil behaviour near the pipeline assume a two-dimensional interaction problem between waves, the seabed soil, and the structure. In other words, it is often considered that water waves travel normal to the orientation of pipeline. However, the real ocean environment is three-dimensional and waves approach the structure from various directions. It is therefore the key objective of the present research to study the seabed behaviour in the vicinity of marine pipelines from a three-dimensional point of view. A three-dimensional numerical model is developed based on the Finite Element Method to analyse the so-called momentary behaviour of soil under the wave loading. In this model, the pipeline is assumed to be rigid and anchored within a rigid impervious trench. A non-slip condition is considered to exist between the pipe and the surrounding soil. Quasi-static soil consolidation equations are then solved with the aid of the proposed FE model. In this analysis, the seabed behaviour is assumed to be linear elastic with the soil strains remaining small. The influence of wave obliquity on seabed responses, i.e. the pore pressure and soil stresses, are then studied. It is revealed that three-dimensional characteristics systematically affect the distribution of soil response around the circumference of the underwater pipeline. Numerical results suggest that the effect of wave obliquity on soil responses can be explained through the following two mechanisms: (i) geometry-based three-dimensional influences, and (ii) the formation of inversion nodes. Further, a parametric study is carried out to investigate the influence of soil, wave and pipeline properties on wave-associated pore pressure as well as principal effective and shear stresses within the porous bed, with the aid of proposed three-dimensional model. There is strong evidence in the literature that the failure of marine pipelines often stems from the instability of seabed soil close to this structure, rather than from construction deficiencies. The wave-induced seabed instability is either associated with the soil shear failure or the seabed liquefaction. Therefore, the developed three-dimensional FE model is used in this thesis to further investigate the instability of seabed soil in the presence of a pipeline. The widely-accepted criterion, which links the soil liquefaction to the wave-induced excess pressure is used herein to justify the seabed liquefaction. It should be pointed out that although the present analysis is only concerned with the momentary liquefaction of seabed soil, this study forms the basis for the three-dimensional analysis of liquefaction due to the residual mechanisms. The latter can be an important subject for future investigations. At the same time, a new concept is developed in this thesis to apply the dynamic component of soil stress angle to address the phenomenon of wave-associated soil shear failure. At this point, the influence of three-dimensionality on the potentials for seabed liquefaction and shear failure around the pipeline is investigated. Numerical simulations reveal that the wave obliquity may not notably affect the risk of liquefaction near the underwater pipeline. But, it significantly influences the potential for soil shear failure. Finally, the thesis proceeds to a parametric study on effects of wave, soil and pipeline characteristics on excess pore pressure and stress angle in the vicinity of the structure.

Page generated in 0.0647 seconds