Spelling suggestions: "subject:"biotechnologies"" "subject:"biotechnological""
151 |
Etude de bioremédiation de sédiments contaminés par des composés organiques nitrés persistantsPerchet, Geoffrey-Thibault Pinelli, Eric. Revel, Jean-Claude. January 2008 (has links)
Reproduction de : Thèse de doctorat : Science des agroressources : Toulouse, INPT : 2008. / Titre provenant de l'écran-titre. Bibliogr. 109 réf.
|
152 |
Innovations et alliances stratégiques : une analyse en termes d'intégration des connaissances appliquée à l'industrie bio-pharmaceutiqueGuezguez, Hella 10 June 2013 (has links) (PDF)
En prenant pour point de départ l'émergence de technologies nouvelles, ce travail s'interroge sur la capacité des acteurs d'une industrie à réorganiser leurs bases de connaissances. Dans ce but, nous nous intéressons aux processus d'intégration des connaissances que nous définissons comme la recherche de complémentarité technologique dans les bases de connaissances des acteurs engagées dans des processus d'innovation. Dans un environnement technologique donné, larecherches de complémentarité technologique définit la recherche des combinaisons technologiques les plus productives. Deux angles de recherche sont ainsi privilégiés : les processus d'intégration intra-organisationnelle des connaissances et les processus d'intégration inter-organisationnelle des connaissances. Appliqué à l'étude des biotechnologies et de l'industrie pharmaceutique, ce travail de nature économétrique mobilisant des bases de données innovations, brevets et alliancesnous permet d'avancer deux principaux résultats. Dans le cadre des processus d'intégration intra-organisationnelle des connaissances, nous montrons que la recherche de complémentarité technologique est déterminée par la détention de connaissances fondamentales qui favorise la capacité des firmes à combiner leurs savoirs et par conséquent leur capacité à innover. Dans le cadre des processus d'intégration inter-organisationnelle des connaissances, nous montrons que la recherche de complémentarité technologique détermine le choix pour les acteurs d'une industrie de former une alliance stratégique et que cette recherche de complémentarité technologique évolue tout au long du cycle de vie de la technologie
|
153 |
Contribution à l'évaluation et à l'optimisation des application des systèmes microbio-électrochimiques : traitement des eaux, production d'électricité, bioélectrosynthèseLapinsonnière, Laure 22 October 2013 (has links) (PDF)
Les systèmes microbioélectrochimiques exploitent le métabolisme de microorganismes particuliers afin de catalyser des réactions d'oxydoréduction. Ces microorganismes organisés en biofilms à l'anode ou à la cathode sont en général des bactéries dites électroactives et peuvent être exploités dans une multitude d'applications. Une revue bibliographique des aspects fondamentaux et applicatifs de ce domaine est présentée. La génération d'électricité couplée à l'épuration d'eaux usées à l'anode de piles à combustible microbiologiques a été étudiée. Des bioanodes développées à partir d'acétate (substrat non fermentescible) sont capables de s'adapter et de dégrader le glucose et le lactose (substrats fermentescibles). Leur adaptation et leurs performances dépendent de la maturité du biofilm, du substrat et du renouvellement régulier de l'anolyte. Les propriétés physico-chimiques de la surface des électrodes ont été modulées afin de promouvoir la connexion de biofilms. A l'anode, nous avons étudié le greffage covalent d'acides phényle boroniques susceptibles de se complexer avec des glucides de la membrane externe des bactéries. Cette fonctionnalisation permet de réduire le temps de formation des biofilms et d'en améliorer les performances électriques sur graphite et sur nanotubes de carbone à parois multiples. A la cathode, les modifications de surface connues sur les bioanodes n'ont pas démontré d'influence sur les performances des biocathodes. Les différentes phases du développement de biocathodes catalysant la réduction du dioxygène à haut potentiel ont été étudiées. Le suivi de biocathodes réduisant le CO2 en acides organiques montre une production séquentielle d'acides organiques à chaîne aliphatique de plus en plus longue.
|
154 |
Struktur- und Funktionsanalyse der Protease RasP aus Bacillus subtilisDrechsel, Susan 10 October 2014 (has links) (PDF)
Bacillus subtilis ist einer der bislang am besten untersuchten Organismen. Es gilt als Modellbakterium, an welchem stoffwechselphysiologische und genetische Phänomene grundlegend aufgeklärt wurden. Daneben gehört B. subtilis zu den generell unbedenklichen Mikroorganismen und wird von der U.S. Food and Drug Administration (FDA) als ‚GRAS‘ (Generally Regarded As Safe) eingestuft. Dementsprechend wird B. subtilis in der biotechnologischen Industrie zur Herstellung vielfältiger Produkte, z.B. in der Lebensmittelindustrie, eingesetzt.
Als Gram-positives Bakterium eignet sich B. subtilis vor allem zur Produktion extrazellulärer Enzyme wie Proteasen und Amylasen. Die Untersuchung der Sekretion dieser Proteine ist sowohl für die grundlagen- als auch für die anwendungsorientierte Forschung von wichtiger Bedeutung.
Vorarbeiten der Arbeitsgruppe von Prof. Wiegert haben gezeigt, dass eine Deletionsmutante im Gen der Protease RasP einen vollständigen Defekt der Sekretion einer α-Amylase verursacht. In meiner Promotionsarbeit soll untersucht werden, welche Rolle RasP bei der Sekretion dieser α-Amylase spielt, und welchen Einfluss diese Protease auf die Proteinsekretion allgemein ausübt. Zudem soll, u.a. am Beispiel von Signalpeptiden, der Mechanismus der Substraterkennung durch RasP untersucht werden.
Ich erhoffe, mit dieser Arbeit einen entscheidenden Beitrag zum Verständnis der Funktion der Protease RasP zu leisten und damit eine weitere gezieltere Optimierung von B. subtilis Produktionsstämmen in der biotechnologischen Industrie zu ermöglichen.
|
155 |
The role of seed company information in price competition, and in farmers' planting decisions /Alexander, Corinne E. N. January 2003 (has links) (PDF)
Calif., University of California, Diss.--Davis, 2003. / Kopie, ersch. im Verl. UMI, Ann Arbor, Mich. - Enth. 3 Beitr.
|
156 |
Erfolgsmöglichkeiten von Biotech-Unternehmen in nationalen Innovationssystemen /Blauenstein, Oliver Richard. January 2004 (has links) (PDF)
Eidgenössische Techn. Hochsch., Diss.--Zürich, 2004. / Zsfassung in engl. Sprache.
|
157 |
Les biotechnologies à la rencontre du corps : lectures phénoménologiques d'une médecine technicienne /Vinit, Florence. January 1997 (has links)
Thèse (M.A.)--Université Laval, 1997. / Bibliogr.: f. 165-171. Publié aussi en version électronique.
|
158 |
Anwendung von Saccharomyces cerevisiae in der Biotechnologie und Oberflächenchemie /Leppchen, Kathrin. January 2009 (has links)
Zugl.: Dresden, Techn. Universiẗat, Diss., 2009.
|
159 |
Automatisation et intégration d'un réacteur de culture cellulaire pour un fonctionnement en continu / Automation and integration of a bioreactor for continuous cell cultureAbeille, Fabien 25 November 2014 (has links)
Au cours des six dernières décennies, la culture cellulaire est devenue une pratique courante. Elle est un outil majeur de la recherche biologique pour la compréhension du vivant, l'étude de maladies et la découverte de nouveaux médicaments. Elle représente un outil très répandu dans de nombreuses industries étant impliquées dans la production de produits alimentaires, cosmétiques et pharmaceutiques.Cependant, les cultures cellulaires en recherche et en industrie sont aujourd'hui confrontées à des limites et soulèvent des besoins à satisfaire. Elles sont toutes deux associées à des coûts élevés du fait des ressources nécessaires (cellules, réactifs, opérateurs qualifiés). Plus précisément, la culture en recherche est caractérisée par le faible débit des expériences, une variabilité importante et un risque de contamination due à la répétition d'opérations manuelles. De plus, les expériences de culture sont effectuées dans des conditions statiques et sur des modèles (cultures 2D, animaux...) relativement éloignés de la physiologie humaine. La culture cellulaire industrielle, quant à elle, a besoin de systèmes miniaturisés qui miment les procédés des bioréacteurs à grande échelle et qui offrent des possibilités de criblage plus élevés.Les systèmes de culture microfluidique représentent un outil prometteur pour résoudre ces problèmes et ces besoins. Le changement de comportement de la physique à petite échelle dans ces dispositifs permet de contrôler temporellement et spatialement le microenvironnement des cellules. Ce qui n'est pas possible avec des méthodes de culture classiques. Le degré d'automatisation et d'intégration permet une nette augmentation du nombre d'expériences par système et la réduction conséquente de la consommation de ressources. Ainsi, de nombreuses petites architectures 3D cellulaires cultivées dans des conditions dynamiques et à haut débit ont été réalisées et ont démontré leur capacité à recréer rapidement des environnements plus physiologiques. En ce qui concerne la culture industrielle, des cultures miniaturisées ont déjà montré leur capacité à reproduire les caractéristiques observées dans les macrobioreactors avec des possibilités de criblages élevées.Dans ce contexte, un bioréacteur microfluidique de paillasse, se conformant aux formats standards utilisés dans le laboratoire d'accueil, a été fabriqué avec succès au cours de cette thèse pour effectuer des cultures cellulaires en continu. Des solutions intégrées ont été mises au point pour fournir de façon continue les conditions adéquates pour la prolifération cellulaire (perfusion, régulation de température…). Des études ont également été menées afin d'automatiser la récolte des cellules avec pour but final de cultiver ces cellules sur du long terme dans le bioréacteur.Le système fabriqué garantit ainsi des conditions stériles pour les cultures sur un simple banc de laboratoire. En outre, ces cultures ont été réalisées de façon autonome sans utiliser un incubateur encombrant. Dans ces conditions, le bioréacteur permet de réaliser des cultures en continu de divers types cellulaires sur plusieurs jours: des cellules d'insectes ont été cultivées pendant 5 jours et des cellules de mammifère pendant 3 jours. En ce qui concerne les cultures de cellules de mammifère, une avancée majeure a été effectuée par rapport aux cultures réalisées dans les systèmes microfluidiques en utilisant comme support de culture des microporteurs (diam. : 175 µm).Bien que la culture de cellules sur microporteurs soit réalisée en routine dans l'industrie, aucun système de culture microfluidique autonome n'a encore intégré ce type de culture. Ce genre de miniaturisation est une avancée majeure pour des applications en bioprocédés où il devrait permettre de raccourcir et réduire les coûts associés au développement de bioproduits. / Over the past six decades, cell culture has become a common practice. It is a major tool in biological research for the understanding of life science, such as the study of disease and the discovery of new drugs. It plays an important role in many industries since it is involved in the production of many food, cosmetic, and pharmaceutical products.However, Research and the industry are now facing some limits and are expressing needs to be addressed. They are both associated with high costs due to a large consumption of resources (cells, reagents, qualified operators). More specifically, cell culture in research is characterized by low throughput of experiments, important variability and risk of contamination due to the recurrent manual operations performed by operators. Additionally, experiments are performed in static conditions and on models (2D cultures, animals…) which poorly resemble the human physiology. Industrial cell culture needs miniaturized systems that mimic the large scale bioreactors and offer higher screening possibilities.Microfluidic cell culture systems represent a promising tool to address the aforementioned issues and needs. The change of physical behaviors at the small-scale in microfluidic devices allow controlling temporally and spatially the cell microenvironment, unattainable with conventional cell culture methods. The level of automation and integration allows the substantial increase of the number of experience per system and considerable reduction of resource consumption. Thus, many small cellular 3D architectures grown under dynamic conditions and in high-throughput have been performed and have demonstrated their ability to quickly re-create more physiological environments. Regarding the industrial culture, miniaturized cultures have already shown their ability to reproduce the characteristics of the culture observed in macrobioreactors with higher screening capabilities.In this framework, a benchtop microfluidic bioreactor, complying with the standard microfluidic platform and format used in the host laboratory, has been successfully fabricated to perform continuous cell cultures. Integrated solutions were developed to provide continuously the adequate conditions for cell proliferation (perfusion, thermal regulation…). Integrated cell harvest was also performed with the final goal to achieve long-term cell culture in the bioreactor.The fabricated system proved to guarantee sterile conditions for cell cultures on a regular lab bench. Moreover, these cultures were achieved autonomously without requiring a cumbersome incubator. In these conditions, the bioreactor demonstrated the possibility to perform continuous cell cultures of various cell types during several days: insects cells were cultured during 5 days and mammalian cells during 3 days. Regarding the mammalian cell cultures performed, a breakthrough has been achieved compared to the cultures performed in microfluidic systems since microcarriers (diam.:175 µm) were used as growth support.Although microcarrier cell culture is routinely performed in the industry, no autonomous microfluidic culture system has addressed this type of culture yet. Such a miniaturization is a major step forward for bioprocess applications where the need to develop scale-down bioreactors that mimic large scale operation has been clearly identified to shorten and reduce the costs associated to bioproduct development.
|
160 |
Bioplasty a jejich role na trhu / Bioplastics and their use on marketDĚDEK, Zdeněk January 2014 (has links)
Since the industrial revolution the rise of the global economy depends on using more amounts of fossil fuels. Currently oil is the leading feedstock for the production of various kinds of plastic products, from packaging materials to machine parts. However, even this advanced technology, such as plastic, awarded several Nobel prizes, has its drawbacks. The big disadvantage is their very slow degradation (tens to thousands of years), thereby the accumulation of waste is increasing. Another disadvantage is its production from non-renewable materials (oil). Therefore, the developed economies, including the European Union (EU), are trying to find new alternatives to conventional plastics using biotechnology manufacturers to called bioplastics, which are made from renewable materials. This thesis deals with the use of bioplastics in the market. Using the questionnaires is creating survey of market among producers of bioplastics and consumers, combined with a personal interview with the promoters of bioplastics. Results processed by this methodology showed that the biggest factor, which influence the promotion of bioplastics, is too high price. This is the main reason why the public is so little informed about them. If the price of production decreases, promotion and use of bioplastics will be probably to increase.
|
Page generated in 0.2072 seconds