• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 16
  • 13
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Transcriptome and Methylation Analysis of Gossypium Petal Tissue

Rambani, Aditi 13 December 2012 (has links) (PDF)
Polyploidization instantly doubles all genome content by combining two genomes that have markedly different methylation and gene expression levels. This process may be accompanied by genetic and epigenetic changes in each genome. Sequencing of the transcriptome (RNA-seq) and the methylome (bisulfite treated libraries whole genome libraries) were used to measure gene expression and methylation levels of genic regions of allopolyploid cotton petals and petals of their diploid relatives. Many differentially expressed genes detected by RNA-seq were consistent with expression levels previously detected by microarrays. RNA-seq results also reconfirmed the presence of general polyploid gene expression trends like expression level dominance and homoeologous expression biases in Gossypium polyploid species. Expression biases between A- and D-genome homoeologs and expression level dominance was characterized for thousands of genes in tetraploids and a diploid F1-hybrid. Unlike the results of microarray study previously done we found a slightly greater number of genes showing A-genome bias vs genes showing D-genome bias. More commonly the overall expression level from homoeologs of polyploid is heterotic i.e the expression level is greater than the average of the expression levels from the two parent genomes. In addition, genome methylation (CG, CHG, and CHH contexts) of each genome was assessed in the diploid and tetraploid samples. The A- and D-genomes had distinct levels of DNA methylation for each context. DNA methylation may be independently regulating homoeologous expression levels of a small number of genes.
12

Epigenetic Responses of Arabidopsis to Abiotic Stress

Laliberte, Suzanne Rae 17 March 2023 (has links)
Weed resistance to control measures, particularly herbicides, is a growing problem in agriculture. In the case of herbicides, resistance is sometimes connected to genetic changes that directly affect the target site of the herbicide. Other cases are less straightforward where resistance arises without such a clear-cut mechanism. Understanding the genetic and gene regulatory mechanisms that may lead to the rapid evolution of resistance in weedy species is critical to securing our food supply. To study this phenomenon, we exposed young Arabidopsis plants to sublethal levels of one of four weed management stressors, glyphosate herbicide, trifloxysulfuron herbicide, mechanical clipping, and shading. To evaluate responses to these stressors we collected data on gene expression and regulation via epigenetic modification (methylation) and small RNA (sRNA). For all of the treatments except shade, the stress was limited in duration, and the plants were allowed to recover until flowering, to identify changes that persist to reproduction. At flowering, DNA for methylation bisulfite sequencing, RNA, and sRNA were extracted from newly formed rosette leaf tissue. Analyzing the individual datasets revealed many differential responses when compared to the untreated control for gene expression, methylation, and sRNA expression. All three measures showed increases in differential abundance that were unique to each stressor, with very little overlap between stressors. Herbicide treatments tended to exhibit the largest number of significant differential responses, with glyphosate treatment most often associated with the greatest differences and contributing to overlap. To evaluate how large datasets from methylation, gene expression, and sRNA analyses could be connected and mined to link regulatory information with changes in gene expression, the information from each dataset and for each gene was united in a single large matrix and mined with classification algorithms. Although our models were able to differentiate patterns in a set of simulated data, the raw datasets were too noisy for the models to consistently identify differentially expressed genes. However, by focusing on responses at a local level, we identified several genes with differential expression, differential sRNA, and differential methylation. While further studies will be needed to determine whether these epigenetic changes truly influence gene expression at these sites, the changes detected at the treatment level could prime the plants for future incidents of stress, including herbicides. / Doctor of Philosophy / Growing resistance to herbicides, particularly glyphosate, is one of the many problems facing agriculture. The rapid rise of resistance across herbicide classes has caused some to wonder if there is a mechanism of adaptation that does not involve mutations. Epigenetics is the study of changes in the phenotype that cannot be attributed to changes in the genotype. Typically, studies revolve around two features of the chromosomes: cytosine methylation and histone modifications. The former can influence how proteins interact with DNA, and the latter can influence protein access to DNA. Both can affect each other in self-reinforcing loops. They can affect gene expression, and DNA methylation can be directed by small RNA (sRNA), which can also influence gene expression through other pathways. To study these processes and their role in abiotic stress response, we aimed to analyze sRNA, RNA, and DNA from Arabidopsis thaliana plants under stress. The stresses applied were sublethal doses of the herbicides, glyphosate and trifloxysulfuron, as well as mechanical clipping and shade to represent other weed management stressors. The focus of the project was to analyze these responses individually and together to find epigenetic responses to stresses routinely encountered by weeds. We tested RNA for gene expression changes under our stress conditions and identified many, including some pertaining to DNA methylation regulation. The herbicide treatments were associated with upregulated defense genes and downregulated growth genes. Shade treated plants had many downregulated defense and other stress response genes. We also detected differential methylation and sRNA responses when compared to the control plants. Changes to methylation and sRNA only accounted for about 20% of the variation in gene expression. While attempting to link the epigenetic process of methylation to gene expression, we connected all the data sets and developed computer programs to try to make correlations. While these methods worked on a simulated dataset, we did not detect broad patterns of changes to epigenetic pathways that correlated strongly with gene expression in our experiment's data. There are many factors that can influence gene expression that could create noise that would hinder the algorithms' abilities to detect differentially expressed genes. This does not, however, rule out the possibility of epigenetic influence on gene expression in local contexts. Through scoring the traits of individual genes, we found several that interest us for future studies.
13

A influência de polimorfismos de base única na metilação de DNA em genes de receptores olfatórios / Single nucleotide polymorphisms lead to differential DNA methylation in odorant receptor genes

Silva, Artur Guazzelli Leme 24 April 2018 (has links)
Os genes de receptores olfatórios (OR) pertencem a uma família de proteínas de membrana formada por cerca de 1000 genes no genoma de camundongo. Os genes OR são expressos de forma monogênica e monoalélica nos neurônios olfatórios (OSNs). No entanto, ainda não está claro o mecanismo que permite essa forma de expressão peculiar, sobretudo, qual o papel da metilação de DNA nesse processo. Nosso estudo determinou o padrão de metilação de DNA da região promotora e codificadora do gene Olfr17. Em células de epitélio olfatório (MOE) de camundongos adultos, observamos na região codificadora (CDS) do gene uma frequência de metilação em dinucleotídeos CpG 58%, enquanto que na sua região promotora ela foi bem mais baixa. Os níveis de metilação do Olfr17 em MOE de embrião (E15.5) e fígado foram similares aos observados em MOE de animais adultos. Em seguida, analisamos se a metilação de DNA pode regular a expressão gênica do Olfr17. Utilizando animais transgênicos onde os neurônios olfatórios que expressam Olfr17 também expressam GFP, pudemos selecionar neurônios olfatórios GFP+ e analisar a metilação do gene Olfr17, que está ativo nestas células. Verificamos que o padrão geral de metilação do Olfr17, tanto na região CDS como na região promotora, não se altera quando este gene está ativo. Este resultado indica que alterações na metilação do gene Olfr17 não são necessárias para que este receptor seja expresso. Finalmente, verificamos que a região promotora do gene Olfr17, de duas linhagens de camundongos diferentes, a C57BL/6 e a 129, possuem dois polimorfismos de base única (SNPs) que alteram o conteúdo CpG. Devido a estes SNPs, a linhagem 129 apresenta dois sítios CpG adicionais, inexistentes na linhagem C57BL/6. Nossas análises mostraram que estes CpGs são frequentemente metilados, o que torna o promotor do Olfr17 de 129 significativamente mais metilado que o promotor de C57BL/6. Em seguida, nós analisamos o nível de expressão no MOE dos dois alelos de Olfr17, o 129 e o C57BL/6, utilizando ensaios de RT-qPCR. Estes experimentos demonstraram que o nível de expressão do alelo 129, que possui 3 CpGs metiladas em seu promotor, é menor que o do alelo C57BL/6, que apresenta apenas uma CpG que é pouco metilada em seu promotor. Nossos resultados sugerem que as alterações na região promotora influenciam a probabilidade com que o gene OR é escolhido para ser expresso no MOE. / Olfactory receptor (OR) genes belong to a large family of membrane proteins composed of 1000 genes in the mouse genome. The OR genes are expressed in the olfactory sensory neurons (OSNs) in a monogenic and monoallelic fashion. However, the mechanisms that govern OR gene expression are unclear. Here we asked whether DNA methylation plays a role in the regulation of OR gene expression. We first determined the DNA methylation pattern in the coding (CDS) and promoter regions of the odorant receptor gene Olfr17. In olfactory epithelium (MOE) cells, the CpG methylation level in the CDS is 58% but is much lower in the promoter region of the gene. In embryonic MOE (E15.5) and liver, the levels of Olfr17 DNA methylation are similar to the ones shown in adult MOE. We next analyzed whether DNA methylation is involved in Olfr17 regulation. We isolated GFP+ neurons from transgenic mice that coexpress GFP with Olfr17, and analyzed the DNA methylation pattern of the Olfr17, which is active in these cells. We found that the general methylation pattern, both, in the coding and promoter regions is not altered in the active gene. These results indicate that changes in DNA methylation are not required for the activation of Olfr17. Finally, we found that the Olfr17 promoter region from two different mouse strains, C57BL/6 and 129, has two single-nucleotide polymorphisms (SNPs) that alter the CpG content. The SNPs lead to the existence of two additional CpGs in the 129 allele, which are absent in the C57BL/6 allele. These CpGs are frequently methylated, making the 129 Olfr17 promoter significantly more methylated than the Olfr17 promoter from C57BL/6. We next performed RT-qPCR experiments to analyze the expression levels of the 129 and C57BL/6 Olfr17 alleles in the MOE. These experiments showed that the expression level of the 129 Olfr17 allele, which contains three methylated CpGs in its promoter region, is lower than the one from C57BL/6, which contains only one, undermethylated CpG, in its promoter. Our results suggest that these promoter modifications regulate the probability of the OR gene choice.
14

A influência de polimorfismos de base única na metilação de DNA em genes de receptores olfatórios / Single nucleotide polymorphisms lead to differential DNA methylation in odorant receptor genes

Artur Guazzelli Leme Silva 24 April 2018 (has links)
Os genes de receptores olfatórios (OR) pertencem a uma família de proteínas de membrana formada por cerca de 1000 genes no genoma de camundongo. Os genes OR são expressos de forma monogênica e monoalélica nos neurônios olfatórios (OSNs). No entanto, ainda não está claro o mecanismo que permite essa forma de expressão peculiar, sobretudo, qual o papel da metilação de DNA nesse processo. Nosso estudo determinou o padrão de metilação de DNA da região promotora e codificadora do gene Olfr17. Em células de epitélio olfatório (MOE) de camundongos adultos, observamos na região codificadora (CDS) do gene uma frequência de metilação em dinucleotídeos CpG 58%, enquanto que na sua região promotora ela foi bem mais baixa. Os níveis de metilação do Olfr17 em MOE de embrião (E15.5) e fígado foram similares aos observados em MOE de animais adultos. Em seguida, analisamos se a metilação de DNA pode regular a expressão gênica do Olfr17. Utilizando animais transgênicos onde os neurônios olfatórios que expressam Olfr17 também expressam GFP, pudemos selecionar neurônios olfatórios GFP+ e analisar a metilação do gene Olfr17, que está ativo nestas células. Verificamos que o padrão geral de metilação do Olfr17, tanto na região CDS como na região promotora, não se altera quando este gene está ativo. Este resultado indica que alterações na metilação do gene Olfr17 não são necessárias para que este receptor seja expresso. Finalmente, verificamos que a região promotora do gene Olfr17, de duas linhagens de camundongos diferentes, a C57BL/6 e a 129, possuem dois polimorfismos de base única (SNPs) que alteram o conteúdo CpG. Devido a estes SNPs, a linhagem 129 apresenta dois sítios CpG adicionais, inexistentes na linhagem C57BL/6. Nossas análises mostraram que estes CpGs são frequentemente metilados, o que torna o promotor do Olfr17 de 129 significativamente mais metilado que o promotor de C57BL/6. Em seguida, nós analisamos o nível de expressão no MOE dos dois alelos de Olfr17, o 129 e o C57BL/6, utilizando ensaios de RT-qPCR. Estes experimentos demonstraram que o nível de expressão do alelo 129, que possui 3 CpGs metiladas em seu promotor, é menor que o do alelo C57BL/6, que apresenta apenas uma CpG que é pouco metilada em seu promotor. Nossos resultados sugerem que as alterações na região promotora influenciam a probabilidade com que o gene OR é escolhido para ser expresso no MOE. / Olfactory receptor (OR) genes belong to a large family of membrane proteins composed of 1000 genes in the mouse genome. The OR genes are expressed in the olfactory sensory neurons (OSNs) in a monogenic and monoallelic fashion. However, the mechanisms that govern OR gene expression are unclear. Here we asked whether DNA methylation plays a role in the regulation of OR gene expression. We first determined the DNA methylation pattern in the coding (CDS) and promoter regions of the odorant receptor gene Olfr17. In olfactory epithelium (MOE) cells, the CpG methylation level in the CDS is 58% but is much lower in the promoter region of the gene. In embryonic MOE (E15.5) and liver, the levels of Olfr17 DNA methylation are similar to the ones shown in adult MOE. We next analyzed whether DNA methylation is involved in Olfr17 regulation. We isolated GFP+ neurons from transgenic mice that coexpress GFP with Olfr17, and analyzed the DNA methylation pattern of the Olfr17, which is active in these cells. We found that the general methylation pattern, both, in the coding and promoter regions is not altered in the active gene. These results indicate that changes in DNA methylation are not required for the activation of Olfr17. Finally, we found that the Olfr17 promoter region from two different mouse strains, C57BL/6 and 129, has two single-nucleotide polymorphisms (SNPs) that alter the CpG content. The SNPs lead to the existence of two additional CpGs in the 129 allele, which are absent in the C57BL/6 allele. These CpGs are frequently methylated, making the 129 Olfr17 promoter significantly more methylated than the Olfr17 promoter from C57BL/6. We next performed RT-qPCR experiments to analyze the expression levels of the 129 and C57BL/6 Olfr17 alleles in the MOE. These experiments showed that the expression level of the 129 Olfr17 allele, which contains three methylated CpGs in its promoter region, is lower than the one from C57BL/6, which contains only one, undermethylated CpG, in its promoter. Our results suggest that these promoter modifications regulate the probability of the OR gene choice.
15

Cytosine Methylation of an Ancient Satellite Family in the Wild Beet Beta procumbens

Schmidt, Martin, Hense, Sarah, Minoche, André E., Dohm, Juliane C., Himmelbauer, Heinz, Schmidt, Thomas, Zakrzewski, Falk 20 May 2020 (has links)
DNA methylation is an essential epigenetic feature for the regulation and maintenance of heterochromatin. Satellite DNA is a repetitive sequence component that often occurs in large arrays in heterochromatin of subtelomeric, intercalary and centromeric regions. Knowledge about the methylation status of satellite DNA is important for understanding the role of repetitive DNA in heterochromatization. In this study, we investigated the cytosine methylation of the ancient satellite family pEV in the wild beet Beta procumbens. The pEV satellite is widespread in species-specific pEV subfamilies in the genus Beta and most likely originated before the radiation of the Betoideae and Chenopodioideae. In B. procumbens , the pEV subfamily occurs abundantly and spans intercalary and centromeric regions. To uncover its cytosine methylation, we performed chromosome-wide immunostaining and bisulfite sequencing of pEV satellite repeats. We found that CG and CHG sites are highly methylated while CHH sites show only low levels of methylation. As a consequence of the low frequency of CG and CHG sites and the preferential occurrence of most cytosines in the CHH motif in pEV monomers, this satellite family displays only low levels of total cytosine methylation.
16

Untersuchung des transkriptionellen Mechanismus der Igf2- Überexpression in Patched-assoziierten Tumoren / Investigation of the transcriptional mechanism of the Igf2-overexpression in Patched-associated tumours

Bauer, Regine 02 May 2006 (has links)
No description available.
17

Establishment and maintenance of the DNA methylation pattern in the human alpha-globin cluster

Gaentzsch, Ricarda E. G. January 2013 (has links)
DNA methylation is an epigenetic modification that plays an important role in development and differentiation. The patterns of DNA methylation are largely established in early embryogenesis and maintained during development. Abnormal DNA methylation patterns have been associated with many human diseases, including cancer. Despite its importance, little is currently known about the mechanisms that determine DNA methylation patterns throughout the genome. To shed light on the molecular mechanisms that regulate DNA methylation, this study investigates whether DNA methylation patterns are established and maintained normally when human DNA is placed into a heterologous murine environment as opposed to its natural, endogenous chromosomal environment. Here, a previously generated transgenic mouse model, containing 117 kb of human DNA bearing the human α-globin cluster and all of its known regulatory elements, was analysed. The pattern of DNA methylation of the endogenous human α-globin cluster was compared with that of the transgenic cluster in the background of mouse embryonic stem cells (ESCs) and tissues. It was found that, although the normal human DNA methylation pattern was largely established and maintained in a mouse background, the region immediately around the human α-globin genes themselves is generally less methylated in mouse compared to human ESCs. It was found that regions adjacent and up to 2kb from the CpG islands (CGIs), so-called CGI shores, were unusually hypomethylated: this seems to be the result of an extension of CGIs in humanised mouse (hm) ESCs compared to human (h) ESCs. Furthermore, this hypomethylation appeared to increase during development in both erythroid and non-erythoid cells. To identify any cis-regulatory sequences responsible for the hypomethylated state of human CGI shores in the mouse, 2-4 kb human test sequences containing the CGI associated with the human α-globin 2 (α2) gene and its adjacent hypomethylated shore were re-integrated into the mouse α-globin locus via recombination-mediated cassette exchange (RMCE). Human CGI shores became hypomethylated in the context of the re-integrated test sequences, indicating that the appearance of hypomethylation is determined by the underlying human DNA sequence in the test fragments. In summary, the data presented here reveal that human CGIs become extended when placed in a mouse background leading to hypomethylation of human CGI shores in the mouse compared to the pattern of methylation at the normal endogenous human locus. These findings suggest that species-specific factors determine DNA methylation near CGIs. The transgenic mouse model provides an excellent system to dissect out species-specific regulation of CGI shore methylation. Furthermore, this study lays the foundation for future experiments addressing the role of DNA methylation in regulating human gene expression in the murine context, and examining the validity of transgenic mouse models for the study of human gene regulation.
18

L'épigénétique, moteur de l'évolution d'un vertébré asexué

Massicotte, Rachel 08 1900 (has links)
L’objectif de cette thèse est de déterminer l’étendue de la variabilité épigénétique, plus particulièrement du polymorphisme de méthylation de l’ADN, non liée à la variabilité génétique dans les populations asexuées en milieu naturel. Cette évaluation nous a permis de mieux cerner l’importance que peuvent avoir les processus épigénétiques en écologie et en évolution. Le modèle biologique utilisé est l’hybride clonal du complexe gynogénétique Chrosomus eos-neogaeus. Malgré une homogénéité génétique, une importante variabilité phénotypique est observée entre les hybrides d’une même lignée clonale mais retrouvés dans des environnements différents. L’influence des processus épigénétiques apporte une explication sur ce paradoxe. L’épigénétique se définit comme une modification de l’expression des gènes sans changement de la séquence d’ADN. La diversité des phénotypes peut entre autre s’expliquer par des patrons de méthylation différentiels des gènes et/ou des allèles des gènes entre les hybrides génétiquement identiques. La diversité des lignées épiclonales peut quant à elle s’expliquer par la colonisation de plusieurs lignées épiclonales, s’établir en réponse à l’environnement ou de façon aléatoire. Plusieurs méthodes seront utilisées afin de survoler le génome des hybrides clonaux pour mettre en évidence le polymorphisme de méthylation de l’ADN à l’échelle de l’individu et entre les individus de différentes populations. / The aim of the thesis is to determine the extent of epigenetic variation, more specifically DNA methylation polymorphism, not linked to genetic variation in natural populations of an asexual vertebrate. This evaluation enables to better understand the importance that plays epigenetics processes in ecology and evolution. The biological model used is the clonal hybrid of the gynogenetic Chrosomus eos-neogaeus complex. Even in absence of genetic difference, an important phenotypic variability is observed among hybrids of the same clonal lineage living in different environments. Epigenetics, a modification of genes expression without a change at the DNA sequence, provides an explanation to this paradox. The diversity of phenotypes may be explained by differential methylation patterns of genes and/or alleles among genetically identical hybrids. The diversity of epiclonal lineages may be explained by the colonisation of many epiclonal lineages, established in response to the environment or stochastically. Many methods were used for screening the genome of clonal hybrids in order to highlight DNA methylation polymophism at the scale of an individual and among individuals of different populations.
19

L'épigénétique, moteur de l'évolution d'un vertébré asexué

Massicotte, Rachel 08 1900 (has links)
L’objectif de cette thèse est de déterminer l’étendue de la variabilité épigénétique, plus particulièrement du polymorphisme de méthylation de l’ADN, non liée à la variabilité génétique dans les populations asexuées en milieu naturel. Cette évaluation nous a permis de mieux cerner l’importance que peuvent avoir les processus épigénétiques en écologie et en évolution. Le modèle biologique utilisé est l’hybride clonal du complexe gynogénétique Chrosomus eos-neogaeus. Malgré une homogénéité génétique, une importante variabilité phénotypique est observée entre les hybrides d’une même lignée clonale mais retrouvés dans des environnements différents. L’influence des processus épigénétiques apporte une explication sur ce paradoxe. L’épigénétique se définit comme une modification de l’expression des gènes sans changement de la séquence d’ADN. La diversité des phénotypes peut entre autre s’expliquer par des patrons de méthylation différentiels des gènes et/ou des allèles des gènes entre les hybrides génétiquement identiques. La diversité des lignées épiclonales peut quant à elle s’expliquer par la colonisation de plusieurs lignées épiclonales, s’établir en réponse à l’environnement ou de façon aléatoire. Plusieurs méthodes seront utilisées afin de survoler le génome des hybrides clonaux pour mettre en évidence le polymorphisme de méthylation de l’ADN à l’échelle de l’individu et entre les individus de différentes populations. / The aim of the thesis is to determine the extent of epigenetic variation, more specifically DNA methylation polymorphism, not linked to genetic variation in natural populations of an asexual vertebrate. This evaluation enables to better understand the importance that plays epigenetics processes in ecology and evolution. The biological model used is the clonal hybrid of the gynogenetic Chrosomus eos-neogaeus complex. Even in absence of genetic difference, an important phenotypic variability is observed among hybrids of the same clonal lineage living in different environments. Epigenetics, a modification of genes expression without a change at the DNA sequence, provides an explanation to this paradox. The diversity of phenotypes may be explained by differential methylation patterns of genes and/or alleles among genetically identical hybrids. The diversity of epiclonal lineages may be explained by the colonisation of many epiclonal lineages, established in response to the environment or stochastically. Many methods were used for screening the genome of clonal hybrids in order to highlight DNA methylation polymophism at the scale of an individual and among individuals of different populations.

Page generated in 0.0865 seconds