• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthese und Charakterisierung von sensitiven vernetzungsfähigen Blockcopolymeren mittels RAFT

Seifert, Denis 17 October 2005 (has links) (PDF)
In vorangegangenen Arbeiten im eigenen Arbeitskreis wurden sensitive Hydrogelpartikel im mm- und μm-Bereich synthetisiert. Die Reaktion dieser Gele auf Änderung des einwirkenden Stimulus war jedoch nicht schnell genug für die gewünschten Anwendungen in Mikroventilen. Die verwendeten Polymere waren statistische Copolymere aus einem Chromophor (DMIAAm) und einem sensitiven Monomer (NIPAAm) und wiesen daher sehr breite Molmassenverteilungen auf. Mit Hilfe des Chromophores wurde es möglich, Hydrogele im Submikrometerbereich zu synthetisieren. Bei der Vernetzung dieser Polymere mit UVBestrahlung musste immer ein Tensid (SDS) zugesetzt werden, um die Bildung kleiner Aggregate zu unterstützen und gleichzeitig die Bildung großer zu unterdrücken. Ein solches Tensid kann die Anwendung dieser Hydrogele in bestimmten Bereichen, wie in der Medizin, verhindern. Es sollen daher tensidfrei Hydrogele synthetisiert werden. Für die Vernetzung sollte auf die photochemische Variante mit DMIAAm als Chromophor zurückgegriffen werden. Als Ausgangspolymere wären Di- bzw. Triblockcopolymere denkbar, die in wässriger Lösung zu einer Mizellbildung neigen. Aus den oben genannten Problemen ergab sich die folgende Zielstellung für die Arbeit. Es sollten sensitive Hydrogelpartikel erzeugt werden, die in der Lage sind, schnell auf eine Änderung der Temperatur zu reagieren. Eine kurze Reaktionszeit ist nur von Gelpartikeln mit kleinen Dimensionen im nm-Bereich zu erwarten. Weiterhin sollen diese Partikel mit einer Hülle umgeben werden, die für eine Stabilisierung sorgt und die Bildung größerer Aggregate unterbindet. Die Hülle muss so beschaffen sein, dass die Volumenänderung des sensitiven Blocks nicht beeinflusst wird. In dieser Dissertation wurde die kontrollierte radikalische Polymerisation von Acrylaten und Acrylamiden untersucht. Als Methode kam die Reversible-Addition-Fragmentation-chain-Transfer (RAFT) Polymerisation zum Einsatz. Die RAFT wurde gewählt, weil diese im Gegensatz zur ATRP metallionenfrei verläuft und die NMRP nicht für Acrylate geeignet ist. Bei den RAFT-Polymerisationen der verschiedenen Monomere wurden vier unterschiedliche Kettenüberträger verwendet (Schema 33) und folgende Ergebnisse erhalten. Als Lösungsmittel kam 1,4-Dioxan in den Polymerisationen zum Einsatz.
2

Synthese und Charakterisierung von phosphoreszenten Terpolymeren und nichtkonjugierten Matrixpolymeren für effiziente polymere Leuchtdioden / Synthesis and characterization of phosphoreszent terpolymers and nonconjugated matrixpolymers for efficient polymer light emitting diodes

Thesen, Manuel Wolfram January 2010 (has links)
Mit Seitenkettenpolystyrenen wurde ein neues Synthesekonzept für phosphoreszente polymere LED-Materialien aufgestellt und experimentell verifiziert. Zunächst erfolgten auf Grundlage strukturell einfacher Verbindungen Untersuchungen zum Einfluss von Spacern zwischen aktiven Seitengruppen und dem Polystyrenrückgrat. Es wurden Synthesemethoden für die Monomere etabliert, durch die aktive Elemente - Elektronen- und Lochleiter - mit und ohne diesen Spacer zugänglich sind. Durch Kombination dieser Monomere waren unter Hinzunahme von polymerisierbaren Iridium-Komplexen in unterschiedlicher Emissionswellenlänge statistische Terpolymere darstellbar. Es wurde gezeigt, dass die Realisierung bestimmter Verhältnisse zwischen Loch-, Elektronenleiter und Triplettemitter in ausreichender Molmasse möglich ist. Die Glasstufen der Polymere zeigten eine deutliche Strukturabhängigkeit. Auf die Lage der Grenzorbitale übten die Spacer nahezu keinen Einfluss aus. Die unterschiedlichen Makromoleküle kamen in polymeren Licht emittierenden Dioden (PLEDs) zum Einsatz, wobei ein deutlicher Einfluss der Spacereinheiten auf die Leistungscharakteristik der PLEDs festzustellen war: Sowohl Effizienz, Leuchtdichte wie auch Stromdichte waren durch den Einsatz der kompakten Makromoleküle ohne Spacer deutlich höher. Diese Beobachtungen begründeten sich hauptsächlich in der Verwendung der aliphatischen Spacer, die den Anteil im Polymer erhöhten, der keine Konjugation und damit elektrisch isolierende Eigenschaften besaß. Diese Schlussfolgerungen waren mit allen drei realisierten Emissionsfarben grün, rot und blau verifizierbar. Die besten Messergebnisse erzielte eine PLED aus einem grün emittierenden und spacerlosen Terpolymer mit einer Stromeffizienz von etwa 28 cd A-1 (bei 6 V) und einer Leuchtdichte von 3200 cd m-2 (bei 8 V). Ausgehend von obigen Ergebnissen konnten neue Matrixmaterialien aus dem Bereich verdampfbarer Moleküle geringer Molmasse in das Polystyrenseitenkettenkonzept integriert werden. Es wurden Strukturvariationen sowohl von loch- wie auch von elektronenleitenden Verbindungen als Homopolymere dargestellt und als molekular dotierte Systeme in PLEDs untersucht. Sieben verschiedene lochleitende Polymere mit Triarylamin-Grundkörper und drei elektronendefizitäre Polymere auf der Basis von Phenylbenzimidazol konnten erfolgreich in den Polymeransatz integriert werden. Spektroskopische und elektrochemische Untersuchungen zeigten kaum eine Veränderung der Charakteristika zwischen verdampfbaren Molekülen und den dargestellten Makromolekülen. Diese ladungstransportierenden Makro-moleküle wurden als polymere Matrizes molekular dotiert und lösungsbasiert zu Einschicht-PLEDs verarbeitet. Als aussichtsreichstes Lochleiterpolymer dieser Reihe, mit einer Strom-effizenz von etwa 33 cd A-1 (bei 8 V) und einer Leuchtdichte von 6700 cd m-2 (bei 10 V), stellte sich ein Triarylaminderivat mit Carbazolsubstituenten heraus. Als geeignetstes Matrixmaterial für die Elektronenleitung wurde ein meta-verknüpftes Di-Phenylbenzimidazol ausfindig gemacht, das in der PLED eine Stromeffizienz von etwa 20 cd A-1 (bei 8 V) und eine Leuchtdichte von 7100 cd m-2 (bei 10 V) erzielte. Anschließend wurden die geeignetsten Monomere zu Copolymeren kombiniert: Die lochleitende Einheit bildete ein carbazolylsubstituiertes Triarylamin und die elektronen-leitende Einheit war ein disubstituiertes Phenylbenzimidazol. Dieses Copolymer diente im Folgenden dazu, PLEDs zu realisieren und die Leistungsdaten mit denen eines Homopolymer-blends zu vergleichen, wobei der Blend die bessere Leistungscharakteristik zeigte. Mit dem Homopolymerblend waren Bauteileffizienzen von annähernd 30 cd A-1 (bei 10 V) und Leuchtdichten von 6800 cd m-2 neben einer Verringerung der Einsatzspannung realisierbar. Für die abschließende Darstellung bipolarer Blockcopolymere wurde auf die Nitroxid-vermittelte Polymerisation zurückgegriffen. Mit dieser Technik waren kontrollierte radikalische Polymersiationen mit ausgewählten Monomeren in unterschiedlichen Block-längen durchführbar. Diese Blockcopolymere kamen als molekular dotierte Matrizes in phosphoreszenten grün emittierenden PLEDs zum Einsatz. Die Bauteile wurden sowohl mit statistischen Copolymeren, wie auch mit Homopolymerblends in gleicher Zusammensetzung aber unterschiedlichem Polymerisationsgrad hinsichtlich der Leistungscharakteristik verglichen. Kernaussage dieser Untersuchungen ist, dass hochmolekulare Systeme eine bessere Leistungscharakteristik aufweisen als niedermolekulare Matrizes. Über Rasterkraft-mikroskopie konnte eine Phasenseparation in einem Größenbereich von etwa 10 nm für den hochmolekularen Homopolymerblend nachgewiesen werden. Für die Blockcopolymere war es nicht möglich eine Phasenseparation zu beobachten, was vorwiegend auf deren zu geringe Blocklänge zurückgeführt wurde. / A new synthetic approach for the synthesis of side chain polystyrenes was established and their use as phosphorescent polymers for polymer light emitting diodes (PLEDs) is shown by experiments. An assay was introduced to clarify influences on electroluminescent behavior for RGB-colored phosphorescent terpolymers with N,N-Di-p-tolyl-aniline as hole-transporting unit, 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (tert-BuPBD) as electron-transporting unit, and different iridium complexes in RGB-colors as triplet emitting materials. All monomers were attached with spacer moieties to the “para” position of a polystyrene. PLEDs were built to study the electro-optical behavior of these materials. The gist was a remarkable influence of hexyl-spacer units to the PLED performance. For all three colors only very restricted PLED performances were found. In comparison RGB-terpolymers were synthesized with directly attached charge transport materials to the polymer backbone. For this directly linked systems efficiencies were 28 cd A−1 @ 6 V (green), 4.9 cd A−1 @ 5 V (red) and 4.3 cd A−1 @ 6 V (bluish). In summary it is assumed that an improved charge percolation pathways regarding to the higher content of semiconducting molecules and an improved charge transfer to the phosphorescent dopand in the case of the copolymers without spacers are responsible for the better device performance comparing the copolymers with hexyl spacers. It was found that the approach of the directly connected charge transport materials at the nonconjugated styrene polymer backbone is favored for further investigations as shown in the following. A series of styrene derived monomers with triphenylamine-based units, and their polymers have been synthesized and compared with the well-known structure of polymer of N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine with respect to their hole-transporting behavior in PLEDs. A vinyltriphenylamine structure was selected as a basic unit, functionalized at the para positions with the following side groups: diphenylamine, 3-methylphenyl-aniline, 1- and 2-naphthylamine, carbazole, and phenothiazine. The polymers are used in PLEDs as host polymers for blend systems. It is demonstrated that two polymers are excellent hole-transporting matrix materials for these blend systems because of their good overall electroluminescent performances and their comparatively high glass transition temperatures. For the carbazole-substituted polymer (Tg = 246 °C), a luminous efficiency of 35 cd A−1 and a brightness of 6700 cd m−2 at 10 V is accessible. The phenothiazine-functionalized polymer (Tg = 220 °C) shows nearly the same outstanding PLED behavior. Hence, both these polymers outperform the well-known polymer of N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine, showing only a luminous efficiency of 7.9 cd A−1 and a brightness of 2500 cd m−2 (10 V). Furthermore, novel styrene functionalized monomers with phenylbenzo[d]imidazole units and the corresponding homopolymers are prepared. The macromolecules are used as matrices for phosphorescent dopants to prepare PLEDs. The devices exhibit current efficiencies up to 38.5 cd A−1 at 100 cd m−2 and maximum luminances of 7400 cd m−2 at 10 V. Afterwards the most efficient monomers of this investigations were combined and statistical copolymers were synthesized. As hole-transporting monomer the carbazole substituted triarylamine and as electron-transporting monomer a disubstituted phenylbenzoimidazole was selected. This statistical copolymer was used in the following as matrix material for phosporescent PLEDs and the device performance was compared with a matrix system of a polymer blend matrix system of corresponding homopolymers. With this homopolymer blend efficiencies of about 30 cd A-1 at 10 V and luminances of 6800 cd m-2 beside a decreased onset voltage were realized. Finally bipolar blockcopolymers of structural basic monomers were synthesized via nitroxide mediated polymerization. With these technique and the chosen hole- and electron-transporting monomers a controlled radical polymerization was realized leading to blockcopolymers in different block lengths. These blockcopolymers were used as molecular doped matrix systems in green phosphoreszent PLEDs. The devices were compared in regard to their performances with PLEDs made of statistical copolymers and homopolymer blends. It was found that high molecular systems show a better device performance compared to low molecular polymer matrices. With atomic force microscopy it is shown that a phase separation takes place for the high molecular blend of homopolymers. For the synthesized blockcopolymers no phase separation could be verified, mainly because of the comparatively low molecular weight of these systems.
3

Amphiphilic BAB-triblock copolymers bearing fluorocarbon groups : synthesis and self-organization in aqueous media

Kristen, Juliane Ute January 2011 (has links)
In this work new fluorinated and non-fluorinated mono- and bifunctional trithiocarbonates of the structure Z-C(=S)-S-R and Z-C(=S)-S-R-S-C(=S)-Z were synthesized for the use as chain transfer agents (CTAs) in the RAFT-process. All newly synthesized CTAs were tested for their efficiency to moderate the free radical polymerization process by polymerizing styrene (M3). Besides characterization of the homopolymers by GPC measurements, end- group analysis of the synthesized block copolymers via 1H-, 19F-NMR, and in some cases also UV-vis spectroscopy, were performed attaching suitable fluorinated moieties to the Z- and/or R-groups of the CTAs. Symmetric triblock copolymers of type BAB and non-symmetric fluorine end- capped polymers were accessible using the RAFT process in just two or one polymerization step. In particular, the RAFT-process enabled the controlled polymerization of hydrophilic monomers such as N-isopropylacrylamide (NIPAM) (M1) as well as N-acryloylpyrrolidine (NAP) (M2) for the A-blocks and of the hydrophobic monomers styrene (M3), 2-fluorostyrene (M4), 3-fluorostyrene (M5), 4-fluorostyrene (M6) and 2,3,4,5,6-pentafluorostyrene (M7) for the B-blocks. The properties of the BAB-triblock copolymers were investigated in dilute, concentrated and highly concentrated aqueous solutions using DLS, turbidimetry, 1H- and 19F-NMR, rheology, determination of the CMC, foam height- and surface tension measurements and microscopy. Furthermore, their ability to stabilize emulsions and microemulsions and the wetting behaviour of their aqueous solutions on different substrates was investigated. The behaviour of the fluorine end-functionalized polymers to form micelles was studied applying DLS measurements in diluted organic solution. All investigated BAB-triblock copolymers were able to form micelles and show surface activity at room temperature in dilute aqueous solution. The aqueous solutions displayed moderate foam formation. With different types and concentrations of oils, the formation of emulsions could be detected using a light microscope. A boosting effect in microemulsions could not be found adding BAB-triblock copolymers. At elevated polymer concentrations, the formation of hydrogels was proved applying rheology measurements. / Im Rahmen dieser Arbeit wurden neue fluorierte und unfluorierte mono- und bifunktionelle Trithiocarbonate der Typen Z-C(=S)-S-R und Z-C(=S)-S-R-S-C(=S)-Z zur Anwendung als CTAs (chain- transfer agents) im RAFT-Polymerisationsverfahren hergestellt. Alle CTAs wurden erfolgreich auf ihre Effizienz zur Steuerung des radikalischen Polymerisationsverfahrens hin durch Polymerisation von Styrol (M3) getestet. Neben GPC-Messungen wurden Endgruppenanalysen der synthetisierten Blockcopolymere mittels 1H-, 19F-NMR und in manchen Fällen auch UV-Vis Spektroskopie durchgeführt. Dazu wurden die Z- und/oder R-Gruppen der CTAs mit geeigneten fluorierten Gruppen versehen. Durch Anwendung des RAFT Verfahrens konnten symmetrische Triblockcopolymere vom Typ BAB bzw. mit einer Fluoralkylgruppe endgecappte unsymmetrische Polymere in nur zwei bzw. einem Polymerisationsschritt hergestellt werden. Das RAFT- Polymerisationsverfahren ermöglicht sowohl die Polymerisation hydrophiler Monomere wie N-Isopropylacrylamid (NIPAM) (M1) oder N-Acryloylpyrrolidin (NAP) (M2) für die A-Blöcke als auch der hydropoben Monomere Styrol (M3), 2-Fluorostyrol (M4), 3-Fluorostyrol (M5), 4- Fluorostyrol (M6) und 2,3,4,5,6- Pentafluorostyrol (M7) für die B-Blöcke. Die Eigenschaften der Blockcopolymere in verdünnten, konzentrierten und hochkonzentrierten wässrigen Lösungen wurden mittels DLS, Trübungsphotometrie, 1H- und 19F-NMR, Rheologie, CMC- sowie Schaumhöhen- und Oberflächenspannungsmessungen und Lichtmikroskopie untersucht. Weiterhin wurden ihre Eigenschaften als Emulgatoren und in Mikroemulsion untersucht. Das Micellbildungsverhalten der hydrophob endfunktionalisierten Polymere wurde mittels DLS Messungen in verdünnter organischer Lösung untersucht. Alle untersuchten BAB-Triblöcke bildeten Micellen und zeigten Oberflächenaktivität bei Raumtemperatur in verdünnter, wässriger Lösung. Weiterhin zeigen die wässrigen Lösungen der Polymere mäßige Schaumbildung. Mit verschiedenen Öltypen und Ölkonzentrationen wurden Emulsionen bzw. Mikroemulsionen gebildet. In Mikroemulsion wurde durch Zugabe von BAB-Triblockopolymeren kein Boosting-Effekt erzielt werden. Bei Untersuchung höherer Polymerkonzentrationen wurde die Bildung von Hydrogelen mittels rheologischer Messungen nachgewiesen. Verschiedene Substrate konnten benetzt werden. Die hydrophob endgecappten Polymere bilden in verdünnter organischer Lösung Micellen, die mittels DLS untersucht wurden, und zeigen somit Tensidverhalten in nichtwässriger Lösung.
4

Synthese und Charakterisierung von sensitiven vernetzungsfähigen Blockcopolymeren mittels RAFT

Seifert, Denis 01 November 2005 (has links)
In vorangegangenen Arbeiten im eigenen Arbeitskreis wurden sensitive Hydrogelpartikel im mm- und μm-Bereich synthetisiert. Die Reaktion dieser Gele auf Änderung des einwirkenden Stimulus war jedoch nicht schnell genug für die gewünschten Anwendungen in Mikroventilen. Die verwendeten Polymere waren statistische Copolymere aus einem Chromophor (DMIAAm) und einem sensitiven Monomer (NIPAAm) und wiesen daher sehr breite Molmassenverteilungen auf. Mit Hilfe des Chromophores wurde es möglich, Hydrogele im Submikrometerbereich zu synthetisieren. Bei der Vernetzung dieser Polymere mit UVBestrahlung musste immer ein Tensid (SDS) zugesetzt werden, um die Bildung kleiner Aggregate zu unterstützen und gleichzeitig die Bildung großer zu unterdrücken. Ein solches Tensid kann die Anwendung dieser Hydrogele in bestimmten Bereichen, wie in der Medizin, verhindern. Es sollen daher tensidfrei Hydrogele synthetisiert werden. Für die Vernetzung sollte auf die photochemische Variante mit DMIAAm als Chromophor zurückgegriffen werden. Als Ausgangspolymere wären Di- bzw. Triblockcopolymere denkbar, die in wässriger Lösung zu einer Mizellbildung neigen. Aus den oben genannten Problemen ergab sich die folgende Zielstellung für die Arbeit. Es sollten sensitive Hydrogelpartikel erzeugt werden, die in der Lage sind, schnell auf eine Änderung der Temperatur zu reagieren. Eine kurze Reaktionszeit ist nur von Gelpartikeln mit kleinen Dimensionen im nm-Bereich zu erwarten. Weiterhin sollen diese Partikel mit einer Hülle umgeben werden, die für eine Stabilisierung sorgt und die Bildung größerer Aggregate unterbindet. Die Hülle muss so beschaffen sein, dass die Volumenänderung des sensitiven Blocks nicht beeinflusst wird. In dieser Dissertation wurde die kontrollierte radikalische Polymerisation von Acrylaten und Acrylamiden untersucht. Als Methode kam die Reversible-Addition-Fragmentation-chain-Transfer (RAFT) Polymerisation zum Einsatz. Die RAFT wurde gewählt, weil diese im Gegensatz zur ATRP metallionenfrei verläuft und die NMRP nicht für Acrylate geeignet ist. Bei den RAFT-Polymerisationen der verschiedenen Monomere wurden vier unterschiedliche Kettenüberträger verwendet (Schema 33) und folgende Ergebnisse erhalten. Als Lösungsmittel kam 1,4-Dioxan in den Polymerisationen zum Einsatz.

Page generated in 0.0805 seconds