• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 19
  • 8
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Computational Studies on the Mechanics of Nanotubes and Nanocomposites

Krishnan, N M Anoop January 2014 (has links) (PDF)
The discovery of carbon nanotubes (CNTs) in 1991 by Iijima revealed the possibility of ultra-strong materials exploiting the properties of materials at smaller length scales. The superior strength, stiffness, and ability to perform under extreme conditions motivated researchers to investigate further on CNTs and similar materials at nanoscale. This resulted in discovery of various nanostructures such boron nitride nanotubes (BNNTs), graphene, hexagonal boron nitride sheets etc. Many of such nanostructures exhibited superior strength and stiffness comparable to that of CNTs. Out of these nanotubes, BNNTs have recently attracted attention from researchers due to their excellent mechanical properties similar to that of CNTs along with better chemical and thermal stability. Thus, BNNTs can be used for varieties of applications such as protective shield for nanomaterials, optoelectronics, bio-medical, nano spintronics, field-emission tips in scanning tunneling and atomic force microscope, and as reinforcement in composites. BNNTs are also used in other applications such as water cleansing, hydrogen storage, and gas accumulators. To exploit these ultra-strong materials, the mechanics of materials under different conditions of loading and failure need to be studied and understood. Also, to make use of the material in a nanocomposite or other applications, the material properties should be evaluated. The present work is focused on the computational study of the mechanics of nanotubes with special reference to BNNTs and CNTs. Note that the attention is not given to the material but to the nanostructure and mechanics. Hence depending on the state-of-the-art, BNNTs and CNTs are used wherever it is appropriate along with justifications. The chapter-wise outline of the present work is given below. The first chapter is an introduction along with a state-of-the-art literature review. The second chapter introduces the molecular simulation methodology in brief. The chapters from the third to the seventh present the work in detail and describe the major contributions. The final chapter summarizes the work along with a few possible directions to extend the present work. Chapter 1 In this chapter, the importance of computational techniques to study the mechanics at the nanoscale is outlined. A brief introduction to various nanostructures and nanotubes are also given. A detailed literature review on the mechanics of nanotubes with special attention to elastic properties, buckling, tensile failure, and as reinforcement in nanocomposites is presented. Chapter 2 In this chapter, the molecular simulation technique is outlined. The molecular dynamics (MD) simulation is one of the most common simulation techniques used to study materials at the nanoscale. A few interatomic potentials that are used in an MD simulation are explained. Theories linking continuum mechanics with the molecular dynamics are also explained here. Chapter 3 In this chapter, the elastic behavior of single-walled BNNTs under axial and torsional loading is studied. Molecular dynamics (MD) simulation is carried out with a tersoff potential for modeling the interatomic interactions. Different chiral configurations with similar diameter are considered to study the effect of chirality on the elastic and shear moduli. Furthermore, the effects of tube length on elastic modulus are also studied by considering different aspects ratios. It is observed that both elastic and shear moduli depend on the chirality of a nanotube. For aspect ratios less than 15, the elastic modulus reduces monotonically with an increase in the chiral angle. For chiral nanotubes the torsional response shows a dependence on the direction of loading. The difference between the shear moduli against and along the chiral twist directions is maximum for a chiral angle of 15◦, and zero for zigzag (0◦) and armchair (30◦) configurations. Chapter 4 Buckling of nanotubes have been studied using many methods such as MD, molecular mechanics, and continuum based shell theories. In MD, motion of the individual atoms are tracked under an applied temperature and pressure, ensuring a reliable estimate of the material response. The response thus simulated varies for individual nanotubes and is only as accurate as the force field used to model the atomic interactions. On the other hand, there exists a rich literature on the understanding of continuum mechanics based shell theories. Based on the observations on the behavior of nanotubes, there have been a number of shell-theory-based approaches to study the buckling of nanotubes. Although some of these methods yield a reasonable estimate of the buckling stress, investigation and comparison of buckled mode shapes obtained from continuum analysis and MD are sparse. Previous studies show that a direct application of shell theories to study nanotube buckling often leads to erroneous results. In this chapter, the nonlocal effect on the mechanics of nanostructures is studied using Eringen’s nonlocal elasticity. The buckling of carbon nanotubes is considered as an example to demonstrate and understand the nonlocal effect in the nanotubes. Single-walled armchair nanotubes with the radius varying from 3.4nm to 17.7nm are considered and their critical buckling stresses are predicted based on multiscale modeling techniques including classical and nonlocal continuum mechanics theories and MD simulation. Fitting nonlocal mechanics models to MD simulation yields a radius-dependent length-scale parameter, which increases approximately linearly with the radius of carbon nanotube. In addition, the nonlocal shell model is found to be a better continuum model than the nonlocal beam model due to its ability to include the circumferential nonlocal effect. Chapter 5 In this chapter, the effects of geometrical imperfections on the buckling of nanotubes are studied. The present study reveals that a major source of the error in continuum shell theories in calculating the buckling stress can be attributed to the geometrical imperfections. Here, geometrical imperfections refer to the departure of the shape of the nanotube from a perfect cylindrical shell. Analogous to the shell buckling in the macro-scale, in this work the nanotube is modeled as a thin-shell with initial imperfection. Then a nonlinear buckling analysis is carried out using the Riks method. It is observed that this proposed approach yields significantly improved estimate of the buckling stress and mode shapes. It is also shown that the present method can account for the variation of buckling stress as a function of the temperature considered. Hence, this turn out to be a robust method for a continuum analysis of nanotubes taking in the effect of variation of temperature as well. Chapter 6 In this chapter, the effects of Stone-Wales (SW) and vacancy defects on the failure behavior of BNNTs under tension are investigated using MD simulations. The Tersoff-Brenner potential is used to model the atomic interaction and the temperature is maintained close to 300 K. The effect of a SW defect is studied by determining the failure strength and failure mechanism of nanotubes with different radii. In the case of a vacancy defect, the effect of an N-vacancy and a B-vacancy is studied separately. Nanotubes with different chirality but similar diameter are considered first to evaluate the chirality dependence. The variation of failure strength with the radius is then studied by considering nanotubes of different diameter but same chirality. It is observed that the armchair BNNTs are extremely sensitive to defects, whereas the zigzag configurations are the least sensitive. In the case of pristine BNNTs, both armchair and zigzag nanotubes undergo brittle failure, whereas in the case of defective BNNTs only the zigzag ones undergo brittle failure. An interesting defect-induced plastic behavior is observed in defective armchair BNNTs. For this nanotube, the presence of a defect triggers mechanical relaxation by bond breaking along the closest zigzag helical path, with the defect as the nucleus. This mechanism results in a plastic failure. Chapter 7 In this chapter, the utility of BNNTs as reinforcement for nanocomposites with metal matrix is studied using MD simulation. Due to the light weight, aluminium is used as the matrix. The influence of number of walls on the strength and stiffness of the nanocomposite is studied using single-and double-walled BNNTs. The three body tersoff potential is used to model the atomic interactions in BNNTs, while the embedded atom method (EAM) potential is used to model the aluminium matrix. The van der Waals interaction between different groups — the aluminium matrix with the nanotube or the between the concentric tubes in double walled BNNT — is modeled using a Lennard Jones potential. A representative volume element approach is used to model the nanocomposite. The constitutive relations for the nanocomposite is also proposed wherein the elastic constants are obtained using the MD simulation. The nanocomposite with reinforcement shows improved axial stiffness and strength. The double-walled BNNT provides more strength to the nanocomposite than the single-walled BNNT. The BNNT reinforcement can be used to design nanocomposites with varying strength depending on the direction of the applied stress. Chapter 8 The summary of the work with a broad outlook is presented in this chapter. The major conclusions of the work are reiterated and possible directions for taking the work further ahead are mentioned.
12

Nanoosciladores atomísticos de nanotubos de Carbono e de Nitreto de Boro / Atomistic nanooscillators of Carbon nanotubes and Boron Nitride

Garcez, Karl Marx Silva 21 August 2007 (has links)
Made available in DSpace on 2016-08-18T18:19:29Z (GMT). No. of bitstreams: 1 Karl Marx Silva.pdf: 2976285 bytes, checksum: 02b42e292682101cc350470d85dea0d7 (MD5) Previous issue date: 2007-08-21 / The Nanotechnology quickly advances to the development of new nanodevices. One of most important in the electronics is clocks that they synchronize the functioning of diverse devices in a determined circuit. In this work we study the development of nanooscillators based upon Carbon nanotubes and Boron-Nitride nanotubes. The atom that oscillates in the interior of each tube is the Neon atom under various temperature conditions and for different nanotubes lengths. The results indicate oscillation stability in a large range of temperatures, what it could mean its potential construction and application as a new device for nanoelectronics. / A Nanotecnologia avança rapidamente para o desenvolvimento de novos nanodispositivos. Uns dos mais importantes na eletrônica são os clocks que sincronizam o funcionamento de diversos dispositivos num determinado circuito. Neste trabalho estudamos o desenvolvimento de nanoosciladores a base de nanotubos de Carbono e nitreto de Boro. O átomo que oscila no interior de cada tubo é o átomo de Neônio sob diversas condições de temperatura e para diferentes comprimentos de nanotubos. Os resultados indicam estabilidade de oscilação numa ampla faixa de temperatura, o que pode significar o seu potencial construção e aplicação como um novo dispositivo para nanoeletrônica.
13

Deformation of hexagonal boron nitride

Alharbi, Abdulaziz January 2018 (has links)
Boron nitride (BN) materials have unique properties, which has led to interest in them in the last few years. The deformation of boron nitride materials including hexagonal boron nitride, boron nitride nanosheets (BNNSs) and boron nitride nanotubes have been studied by Raman spectroscopy. Both mechanical and liquid exfoliations were employed to obtain boron nitride nanostructures. Boron nitride glass composites were synthesised and prepared in thin films to be deformed by bending test in-situ Raman spectroscopy. Hexagonal boron nitride in the form of an individual flake and as flakes dispersed in glass matrices has been deformed and Raman measurement shows its response to strain. The shift rates were, -4.2 cm-1/%, -6.5 cm-1/% for exfoliated h-BN flake with thick and thin regions and -7.0 cm-1/%, -2.8 cm-1/% for the h-BN flakes in the h-BN/ glass (I) and glass (II) composites. Boron nitride nanosheets (BNNSs) shows a G band Raman peak at 1367.5 cm-1, and the deformation process of BNNSs/ glass composites gives a shift rate of -7.65 cm-1/% for G band. Boron nitride nanotubes (BNNTs) have a Raman peak with position at 1368 cm-1, and their deformation individually and in composites gives Raman band shift rates of -25.7 cm-1/% and -23.6 cm-1/%. Glass matrices shows compressive stresses on boron nitride fillers and this was found as an upshift in the frequencies of G band peak of boron nitride materials. Grüneisen parameters of boron nitride (BN) were used to calculate the residual strains in glass matrices of BNNSs nanocomposites as well as to estimate the band shift rates which found to be in agreement with the experimental shift rate of bulk BN and BNNTs.
14

Synthesis and characterisation of molecular nanostructures / Synthese und Charakterisierung von molekularen Nanostrukturen

Borowiak-Palen, Ewa 16 July 2004 (has links) (PDF)
In this thesis, bulk and local scale spectroscopic and microscopic tools have been applied to investigate the purified raw material of SWCNT and synthesized MWBNNT, BN-nanocapsules, B-doped SWCNT and SiC nanostructures. Using bulk scale sensitive techniques, including optical absorption spectroscopy, Raman spectroscopy, high-resolution electron energy-loss spectroscopy, the average response of the whole sample is obtained. On the other hand, on a local scale transmission and scanning electron microscopy as well as TEM-electron energy-loss spectroscopy provide information on single tubes or other nanostructures. First, diverse chemical and oxidation methods for the purification of as-produced SWCNT were presented. Purified samples were investigated using TEM and OAS. The analysis of the optical absorption spectra in the UV-Vis energy range revealed that some of the chemical treatments are harmful to nanotubes. In contrast to the chemical treatments an oxygen burning procedure was used on the raw material in high vacuum and a temperature range 450?650oC. The purification processes of SWCNT by HNO3 and oxygen burning procedures resulted in SWCNT comprised of selected diameters and a reduced diameter distribution. Both HNO3 and oxygen burning treatments can be used to selectively remove SWCNT with smaller diameters from the samples. In addition, an adapted substitution reaction was used for the synthesis of multiwall boron nitride nanotubes. It was shown that the IR-response of MWBNNT can be used as a fingerprint to analyse MWBNNT. As in h-BN for the analysis one has to be aware of the sample texture and the LO-TO splitting of the IR-active modes. TEM images and B1s and N 1s excitation edges of the grown material reveal the presence of multiwall BN nanotubes with an inner diameter of 3.1 nm and with a larger interplanar distance than in h-BN. The electronic properties of the multiwall BN nanotubes as derived from the q-dependent dielectric function e(w,q) are dominated by the band structure of the hexagonal-like BN sheets, as revealed by the large degree of momentum dispersion observed for the p and s+p plasmons, in agreement with that previously reported for different graphitic allotropic forms. Moreover, a fast and highly efficient synthesis route to produce BN nanocapsules with a narrow size distribution was developed. This was achieved by an adapted substitution process using SWCNT as templates followed by a rapid cooling treatment. The IR responses reveal the strong dipole active fingerprint lines of h-BN with distinct differences, which are due to texturing effects and which highlight the BN nanocapsules potential application as a reference source when deriving the sp2 to sp3 ratio in BN species due to their random orientation Furthermore, the idea of substitution was used for the systematic studies of B-doped SWCNT. The experiments carried out have resulted in 1, 5, 10, and 15 % boron incorporated into the single wall carbon nanotubes. Core level excitation spectroscopy of the B1s and C1s edges revealed that the boron atoms substitute carbon atoms in the tube lattice keeping an sp2-like bond with their nearest C neighbour atoms. Our results show that a simple rigid band model as has been applied previously to intercalated SWCNT is not sufficient to explain the changes in the electronic properties of highly doped B-SWCNT and a new type of a highly defective BC3 SWNT with new electronic properties is obtained. Finally, different silicon carbide nanostructures were produced. The spectroscopic and microscopic data led to a good understanding of the formation process. NH3 acts as a source of hydrogen that plays a key role in the formation of the structures through its ability to decompose SiC at high temperature such that along with the stacking faults that arise from the many polytypes of SiC the produced SiC nanorods become porous then hollow and eventually are completely decomposed.
15

Phonon Anomalies And Phase Transitions In Pyrochlore Titanates, Boron Nitride Nanotubes And Multiferroic BiFeO3 : Temperature- And Pressure-Dependent Raman Studies

Saha, Surajit 10 1900 (has links) (PDF)
This thesis presents experimental and related theoretical studies of pyrochlore titanate oxides, boron nitride nanotubes, and multiferroic bismuth ferrite. We have investigated these systems at high pressures and at low temperatures using Raman spectroscopy. Below, we furnish a synoptic presentation of our work on these three systems. In Chapter 1, we introduce the systems studied in this thesis, viz. pyrochlores, boron nitride nanotubes, and multiferroic BiFeO3, with a review of the literature pertaining to their structural, electronic, vibrational, and mechanical properties. We also bring out our interests in these systems. Chapter 2 includes a brief description of the theory of Raman scattering and infrared absorption. This is followed by a short account of the experimental setups used for Raman and infrared measurements. We also present the technical details of high pressure technique including the alignment of diamond anvil cells, gasket preparation, calibration of the pressure, etc. Chapter 3 furnishes the results of our pressure-and temperature-dependent studies of pyrochlore oxides which has been divided into eight different parts. In recent years, magnetic and thermodynamic properties of pyrochlores have received a lot of attention. However, not much work has been reported to address the quasiparticle excitations, e.g., phonons and crystal-field excitations in these materials. A material that shows exotic magnetic behavior and high degree of degenerate ground states can be expected to have low-lying excitations with possible couplings with phonons, thereby, finger-printing various novel properties of the system. Raman and infrared absorption spectroscopies can, therefore, be used to comprehend the novel role of phonons and their role in various phenomena of frustrated magnetic pyrochlores. Recently, there have been reports on various novel properties of these systems; for example, Raman and absorption studies [Phys. Rev. B 77, 214310 (2008)] have revealed a loss of inversion symmetry in Tb2Ti2O7 at low temperatures which has been suggested as the key reason for this frustrated magnet to remain in spin-liquid state down to 70 mK. Powder neutron-diffraction experiments [Nature 420, 54 (2002)] have shown that an application of isostatic pressure of about 8.6 GPa in spin-liquid Tb2Ti2O7 induces a long-range magnetic order of the Tb3+ spins coexisting with the spin-liquid phase ascribing this transition to the breakdown of the delicate balance among the various fundamental interactions. Moreover, Raman and x-ray studies have shown that Tb2Ti2O7,Sm2Ti2O7,and Gd2Ti2O7 undergo a structural transition followed by an irreversible amorphization at very high pressures (~ 40 GPa or above) [Appl. Phys. Lett. 88, 031903 (2006)]. In this chapter, therefore, we present our temperature-and pressure-dependent Raman studies of A2Ti2O7 pyrochlores, where ‘A’ is a trivalent rare-earth element (A = Sm, Gd,Tb, Dy,Ho, Er,Yb, and Lu; and also Y). Since all the group theoretically predicted Raman modes of this cubic lattice are due to oxygen vibrations only, in Part (A), we revisit the phonon assignments of pyrochlore titanates by performing Raman measurements on the O16 /O18 − isotope based Dy2Ti2O7 and Lu2Ti2O7 and find that the vibrations with frequencies below 250 cm−1 do not involve oxygen atoms. Our results lead to a reassignment of the pyrochlore Raman phonons thus proposing that the mode with frequency ~ 200 cm−1, which has earlier been known as an F2g phonon due to oxygen vibration, is a vibration of Ti4+ ions. Moreover, we have performed lattice dynamical calculations using Shell model that help us to assign the Raman phonons. In Part (B), we have explored the temperature dependence of the Raman phonons of spin-ice Dy2Ti2O7 and compared with the results of two non-magnetic pyrochlores, Lu2Ti2O7 and Y2Ti2O7. Our results reveal anomalous red-shift of some of the phonons in both magnetic and non-magnetic pyrochlores as the temperature is lowered. The phonon anomalies can not be understood in terms of spin-phonon and crystal field transition-phonon couplings, thus attributing them to phonon-phonon anharmonic interactions. We also find that the anomaly of the disorder activated Ti4+ Raman vibration (~ 200 cm−1) is unusually high compared to other phonons due to the large vibrational amplitudes of Ti4+-ions rendered by the vacant Wyckoff sites in their neighborhood. Later, we have quantified the anharmonicity in Dy2Ti2O7. We have extended our studies on spin-ice compound Dy2Ti2O7 by performing simultaneous pressure-and temperature-dependent Raman measurements, presented in Part (C). We show that a new Raman mode appears at low temperatures below TC ~ 110 K, suggesting a structural transition, also supported by our x-ray measurements. There are reports [Phys. Rev. B 77, 214310 (2008), Phys.Rev.B 79, 214437 (2009)] in the literature where the new mode in Dy2Ti2O7 at low temperatures has been assigned to a crystal field transition. Here, we put forward evidences that suggest that the “new” mode is a phonon and not a crystal field transition. Moreover, the TC is found to depend on pressure with a positive coefficient. In Part (D), we have presented our results of temperature-and pressure-dependent Raman and x-ray measurements of spin-frustrated pyrochlores Gd2Ti2O7, Tb2Ti2O7,and Yb2Ti2O7. Here, we have estimated the quasiharmonic and anharmonic contributions to the anomalous change in phonon frequencies with temperature. Moreover, we find that Gd2Ti2O7 and Tb2Ti2O7 undergo a subtle structural transition at a pressure of ~ 9 GPa which is absent in Yb2Ti2O7. The implication of this structural transition in the context of a long-range magnetically ordered state coexisting with the spin-liquid phase in Tb2Ti2O7 at high pressure (8.6 GPa) and low temperature (1.5 K), observed by Mirebeau et al. [Nature 420, 54 (2002)], has been discussed. As we have established in the previous parts that the anomalous behavior of pyrochlore phonons is due to phonon-phonon anharmonic interactions, we have tuned the anharmonicity in the first pyrochlore of the A2Ti2O7 series, i.e., Sm2Ti2O7,by replacing Ti4+-ions with bigger Zr4+-ions, presented in Part (E). Our results suggest that the phonon anomalies have a very strong dependence on the ionic size and mass of the transition element (i.e., the B4+-ion in A2B2O7 pyrochlores). We have also observed signatures of coupling between a phonon and crystal-field transitions in Sm2Ti2O7. In Part (F), we have studied spin-ice compound Ho2Ti2O7 and compared the phonon anomalies with the stuffed spin-ice compounds, Ho2+xTi2−xO7−x/2 by stuffing Ho3+ ions into the sites of Ti4+ with appropriate oxygen stoichiometry. We find that as more and more Ho3+-ions are stuffed, there is an increase in the structural disorder of the pyrochlore lattice and the phonon anomalies gradually disappear with increasing Ho3+-ions. Moreover, a coupling between phonon and crystal field transition has also been observed. In Part (G), we have examined the temperature dependence of phonons of “dynamical spin-ice” compound Pr2Sn2O7 and compared with its non-pyrochlore (monoclinic) counterpart Pr2Ti2O7. Our results conclude that the anomalous behavior of phonons is an intrinsic property of pyrochlore structure having inherent vacant sites. We also find a coupling between phonon and crystal-field transitions in Pr2Sn2O7. In the last part of this chapter, Part (H), we present our Raman studies of Er2Ti2O7. Here, we show that in addition to the anomalous phonons, there are modes that originate from photoluminescence transitions and some of these luminescence lines show anomalous temperature dependence which have been understood using the theory of optical dephasing in crystals, developed by Hsu and Skinner [J. Chem. Phys. 81, 1604 (1984)]. Temperature dependence of a few Raman modes and photoluminescence bands suggest a phase transition at 130 K. In Chapter 4, we furnish our pressure-dependent Raman studies of boron nitride multi-walled nanotubes (BNNT) and hexagonal boron nitride (h-BN) and compare the results with those of their carbon counterparts. Using Raman spectroscopy, we show that BNNT undergo an irreversible transition at ~ 12 GPa while the carbon counterpart, multi-walled carbon nanotubes, show a similar transition at a much higher pressure of ~ 51 GPa. In sharp contrast, the layered form of both the systems (i.e. h-BN and graphite) undergo a hexagonal to wurtzite phase at nearly similar pressure (~ 13 GPa of h-BN and ~ 15 GPa for graphite). A molecular dynamical simulation on boron nitride single-walled nanotubes has also been undertaken that suggests that the polar nature of the B−N bonds may be responsible for the irreversibility of the pressure-induced transformations. It is interesting to see that in hexagonal phase both the systems have almost similar mechanical property, but once they are rolled up to make nanotubes, the property becomes quite different. Chapter 5 presents the temperature dependence of the Raman modes of multiferroic thin films of BiFeO3 and Bi0.7Tb0.2La0.1O3. Though there have been several Raman investigations of BiFeO3 in literature, here we emphasize the observation of unusually intense second order Raman phonons. Our results have motivated Waghmare et al. to suggest a theoretical model to explain the anomalously large second order Raman tensor of BiFeO3 in terms of an incipient metal-insulator transition. In Chapter 6, we summarize our findings on the three different systems, namely, pyrochlores, boron nitride nanotubes, and BiFeO3 and highlight a few possible experiments that may be undertaken in future to have a better understanding of these systems.
16

Synthesis and characterisation of molecular nanostructures

Borowiak-Palen, Ewa 12 August 2004 (has links)
In this thesis, bulk and local scale spectroscopic and microscopic tools have been applied to investigate the purified raw material of SWCNT and synthesized MWBNNT, BN-nanocapsules, B-doped SWCNT and SiC nanostructures. Using bulk scale sensitive techniques, including optical absorption spectroscopy, Raman spectroscopy, high-resolution electron energy-loss spectroscopy, the average response of the whole sample is obtained. On the other hand, on a local scale transmission and scanning electron microscopy as well as TEM-electron energy-loss spectroscopy provide information on single tubes or other nanostructures. First, diverse chemical and oxidation methods for the purification of as-produced SWCNT were presented. Purified samples were investigated using TEM and OAS. The analysis of the optical absorption spectra in the UV-Vis energy range revealed that some of the chemical treatments are harmful to nanotubes. In contrast to the chemical treatments an oxygen burning procedure was used on the raw material in high vacuum and a temperature range 450?650oC. The purification processes of SWCNT by HNO3 and oxygen burning procedures resulted in SWCNT comprised of selected diameters and a reduced diameter distribution. Both HNO3 and oxygen burning treatments can be used to selectively remove SWCNT with smaller diameters from the samples. In addition, an adapted substitution reaction was used for the synthesis of multiwall boron nitride nanotubes. It was shown that the IR-response of MWBNNT can be used as a fingerprint to analyse MWBNNT. As in h-BN for the analysis one has to be aware of the sample texture and the LO-TO splitting of the IR-active modes. TEM images and B1s and N 1s excitation edges of the grown material reveal the presence of multiwall BN nanotubes with an inner diameter of 3.1 nm and with a larger interplanar distance than in h-BN. The electronic properties of the multiwall BN nanotubes as derived from the q-dependent dielectric function e(w,q) are dominated by the band structure of the hexagonal-like BN sheets, as revealed by the large degree of momentum dispersion observed for the p and s+p plasmons, in agreement with that previously reported for different graphitic allotropic forms. Moreover, a fast and highly efficient synthesis route to produce BN nanocapsules with a narrow size distribution was developed. This was achieved by an adapted substitution process using SWCNT as templates followed by a rapid cooling treatment. The IR responses reveal the strong dipole active fingerprint lines of h-BN with distinct differences, which are due to texturing effects and which highlight the BN nanocapsules potential application as a reference source when deriving the sp2 to sp3 ratio in BN species due to their random orientation Furthermore, the idea of substitution was used for the systematic studies of B-doped SWCNT. The experiments carried out have resulted in 1, 5, 10, and 15 % boron incorporated into the single wall carbon nanotubes. Core level excitation spectroscopy of the B1s and C1s edges revealed that the boron atoms substitute carbon atoms in the tube lattice keeping an sp2-like bond with their nearest C neighbour atoms. Our results show that a simple rigid band model as has been applied previously to intercalated SWCNT is not sufficient to explain the changes in the electronic properties of highly doped B-SWCNT and a new type of a highly defective BC3 SWNT with new electronic properties is obtained. Finally, different silicon carbide nanostructures were produced. The spectroscopic and microscopic data led to a good understanding of the formation process. NH3 acts as a source of hydrogen that plays a key role in the formation of the structures through its ability to decompose SiC at high temperature such that along with the stacking faults that arise from the many polytypes of SiC the produced SiC nanorods become porous then hollow and eventually are completely decomposed.
17

Caractérisation de nanosondes fluorescentes développées à partir de nanotubes de nitrure de bore

David, Carolane 12 1900 (has links)
La structure spécifique des nanotubes rend ce matériau très intéressant dans l’élaboration de nanohybrides. La cavité interne des nanotubes permet l’encapsulation de molécule laissant la paroi externe libre pour une fonctionnalisation. Les nanotubes de carbone sont déjà bien connus pour l’élaboration de nanosondes Raman. Les molécules de colorants encapsulé dans leurs cavité interne sont protégées de l’irradiation du laser. Les propriétés électroniques de cette structure en carbone permettent le transfert d’énergie entre le colorant et le nanotube engendrant ainsi une extinction de la fluorescence du colorant. La surface du nanotube de carbone est libre pour réaliser des fonctionnalisations permettant de modifier certaines propriétés de la nanosonde. L’élaboration de nanohybride à partir de cette structure permet les analyses de « multiplexage » en changeant simplement le colorant encapsulé dans la cavité interne du nanotube et la fonctionnalisation en surface. La structure des nanotubes de nitrure de bore (BNNTs) est très similaire à celle de leurs homologues en carbone. La cavité interne permet également l’encapsulation de colorant cependant les propriétés électroniques résultantes de cette structure ne permet pas le transfert d’énergie. Les molécules de colorant encapsulé dans les BNNTs conservent donc leurs fluorescences. Des études précédentes démontrent qu’après encapsulation, le spectre de fluorescence du colorant α-sexithiophène (6T) est élargi et décalé vers les longueurs d’ondes plus grandes, c.-à-d. vers le rouge. L’hypothèse la plus probable, quant à la raison de ce phénomène, est que la grande distribution de taille de diamètre de l’échantillon de BNNTs permet différentes agglomérations de 6T. Les nanosondes résultantes sont composées d’un mélange d’agglomération de colorant absorbant à différentes longueurs d’onde. Afin de confirmer cette hypothèse, nous allons procéder au triage en taille de diamètre des BNNTs. Pour cela, plusieurs étapes sont nécessaires, comme la fonctionnalisation de la surface des BNNTs pour les rendre dispersible dans l’eau, l’encapsulation du colorant de 6T selon un protocole déjà connus dans la littérature et enfin le test d’une méthode de triage de nanotubes en fonction de leurs diamètres et donc de leurs densités. La méthode de triage sélectionnée parmi les méthodes découvertes dans la littérature, a démontré son efficacité sur les nanotubes de carbone mais n’a cependant jamais été testée sur les BNNTs. Ce mémoire présente les premiers résultats d’une séparation de nanosondes fluorescentes en fonction de leurs tailles de diamètre. / The specific structure of nanotubes is interesting for the synthesis of nanohybrides. Molecules are encapsulated in the internal cavity of the tube while the external wall remain free for further manipulation. Carbon nanotubes are already known for synthesizing Raman nanoprobes. Dyes encapsulated inside the nanotube are protected from irradiation. The electronic properties of the carbon structure lead to energy transfer between the dyes and the nanotubes, this result by the the extinction of the dye’s fluorescence. The carbon nanotube’s surface is free for functionalisation that can add some properties to the nanoprobe. The preparation process of nanohybrides with that structures permit some analyse in « multiplexing » by easily change the dye encapsulated or the functionalisation on the surface of the nanotube. The structure of boron nitride nanotubes (BNNTs) is similar to the carbon one. The internal cavity can encapsulate dyes but the electronic properties don’t permit the energy exchange. Encapsulated dyes inside BNNTs emit some fluorescence. Previous studies show some changes in the fluorescence spectrum of α-sexithiophene (6T) after encapsulation inside BNNTs. The spectrum shows larger bands and a red shift. This caracteristic can come from a large distribution of diameter sizes in the BNNT sample. Différent diameter sizes of nanotubes results in different agglomeration of dyes inside their internal cavities, and these differents nanoprobes are absorbing at different wavelengths. To confirm this hypothesis, we will separate BNNTs into their diameter sizes. Before that some manipulation is necesary, like the functionnalisation of the nanotubes’ surfaces for a better dispersion in water, the encapsulation of 6T realized with the process already known and the experience of a new method to separate nanotubes by size. This separating method is chose from all the method of separating carbon nanotubes but has never been tested on BNNTs. This document shows the first results of separating fluorescents nanoprobes by diameter size.
18

Nanotubes de carbone et de nitrure de bore sous haute pression / Carbon nanotubes and boron nitride nanotubes under high pressure

Silva Santos, Silvio Domingos 14 December 2017 (has links)
Dans ce travail de thèse nous avons étudié la stabilité structurale à très haute pression de nanotubes de carbone et de nitrure de bore à la fois in situ et après cycle de pression. Nous essayons de cette manière une première approche pour déterminer le rôle de paramètres comme la composition (C or BN), nombre de parois ou diamètre dans la limite de stabilité de la structure des nanotubes.Les deux premiers chapitres de la thèse nous permettent de faire une introduction aux aspects fondamentaux relatifs aux propriétés des nanotubes de carbone, suivie d’une présentation des méthodes de synthèse ainsi que des techniques expérimentales utilisées dans cette thèse. Les trois chapitres suivants permettent de présenter l’évolution structurale des trois systèmes étudiés: a) Des nanotubes de carbone monoparois de faible diamètre enrichis en chiralité (6,5), b) nanotubes de carbone triple-parois, et c) des nanotubes de nitrure de bore à parois multiple. Les pressions maximales de ces études ont été de 80, 72 et 50 GPa respectivement. Le collapse radial de la structure et la stabilité tubulaire des nano-objets ont été au centre de nos recherches. En particulier, les nanotubes de carbone à simple parois de chiralité (6,5) peuvent être préservés jusqu’à 50 GPa, pression à la quelle a lieu une transformation irréversible. De leur côté, les nanotubes à 3 parois ont pu être détectés jusqu’à environ 60 GPa, présentant en suite une transformation irréversible à 72 GPa. Enfin, les nanotubes de nitrure de bore ont montré une plus faible stabilité mécanique face à leurs analogues carbonés. De plus ils présentent une évolution vers toute une variété de morphologies, parmi lesquelles certaines ont été observées pour la première fois dans ce travail de thèse / This thesis work focuses on the structural stability of well-characterized carbon and boron nitride nanotubes under very high pressures both including their in situ study as well as after the pressure cycle. We try to provide in this way a first approach to determine the role of parameters as composition (C or BN), number of walls or diameter on the limit stability of nanotube structures.In the two first chapters, we provide a basic description of the theoretical aspects related to carbon nanotubes, we address their main synthesis methods as well as the experimental techniques used in this thesis to study these systems. In the three following chapters, we describe the structural evolution of three systems i) low diameter (6,5) chirality enriched single wall nanotubes ii) triple-wall carbon nanotubes and iii) multiwall boron nitride nanotubes. The maximum pressure attained in these studies were of 80, 72 and 50 GPa respectively.Both the radial collapse of the structure and the mechanical stability of the tubular structure under very high pressure are addressed in the study. In particular, after their collapse, the low-diameter (6,5) single walled carbon nanotubes can be preserved up to 50 GPa and above this value the tubes undergo an irreversible structural transformation. On its side, the triple wall systems could be detected up to ~ 60 GPa but their transformed irreversibly at 72 GPa. Finally boron nitride tubes have a low mechanical stability when compared with their carbon counterparts. Under high pressures they present transformations at different pressures to a variety of structural morphologies, some of them having been detected for the first time in this work
19

Elasticity And Structural Phase Transitions Of Nanoscale Objects

Mogurampelly, Santosh 09 1900 (has links) (PDF)
Elastic properties of carbon nanotubes (CNT), boron nitride nanotubes (BNNT), double stranded DNA (dsDNA), paranemic-juxtapose crossover (PX-JX) DNA and dendrimer bound DNA are discussed in this thesis. Structural phase transitions of nucleic acids induced by external force, carbon nanotubes and graphene substrate are also studied extensively. Electrostatic interactions have a strong effect on the elastic properties of BNNTs due to large partial atomic charges on boron and nitrogen atoms. We have computed Young’s modulus (Y ) and shear modulus (G) of BNNT and CNT as a function of the nanotube radius and partial atomic charges on boron and nitrogen atoms using molecular mechanics calculation. Our calculation shows that Young’s modulus of BNNTs increases with increase in magnitude of the partial atomic charges on B and N atoms and can be larger than the Young’s modulus of CNTs of same radius. Shear modulus, on the other hand depends weakly on the magnitude of partial atomic charges and is always less than the shear modulus of the CNT. The values obtained for Young’s modulus and shear modulus are in excellent agreement with the available experimental results. We also study the elasticity of dsDNA using equilibrium fluctuation methods as well as nonequilibrium stretching simulations. The results obtained from both methods quantitatively agree with each other. The end-to-end length distribution P(ρ) and angle distribution P(θ) of the dsDNA has a Gaussian form which gives stretch modulus (γ1) to be 708 pN and persistence length (Lp) to be 42 nm, respectively. When dsDNA is stretched along its helix axis, it undergoes a large conformational change and elongates about 1.7 times its initial contour length at a critical force. Applying a force perpendicular to the DNA helix axis, dsDNA gets unzipped and separated into two single-stranded DNA (ssDNA). DNA unzipping is a fundamental process in DNA replication. As the force at one end of the DNA is increased the DNA starts melting above a critical force depending on the pulling direction. The critical force fm , at which dsDNA melts completely decreases as the temperature of the system is increased. The melting force in the case of unzipping is smaller compared to the melting force when the dsDNA is pulled along the helical axis. In the case of melting through unzipping, the double-strand separation has jumps which correspond to the different energy minima arising due to sequence of different base-pairs. Similar force-extension curve has also been observed when crossover DNA molecules are stretched along the helix axis. In the presence of mono-valent Na+ counterions, we find that the stretch modulus (γ1 ) of the paranemic crossover (PX) and its topoisomer juxtapose (JX) DNA structure is significantly higher (30 %) compared to normal B-DNA of the same sequence and length. When the DNA motif is surrounded by a solvent of divalent Mg2+ counterions, we find an enhanced rigidity compared to in Na+ environment due to the electrostatic screening effects arising from the divalent nature of Mg2+ counterions. This is the first direct determination of the mechanical strength of these crossover motifs which can be useful for the design of suitable DNA motifs for DNA based nanostructures and nanomechanical devices with improved structural rigidity. Negatively charged DNA can be compacted by positively charged dendrimer and the degree of compaction is a delicate balance between the strength of the electrostatic interaction and the elasticity of DNA. When the dsDNA is compacted by dendrimer, the stretch modulus, γ1 and persistence length, Lp decreases dramatically due to backbone charge neutralization of dsDNA by dendrimer. We also study the effect of CNT and graphene substrate on the elastic as well as adsorption properties of small interfering RNA (siRNA) and dsDNA. Our results show that siRNA strongly binds to CNT and graphene surface via unzipping its base-pairs and the propensity of unzipping increases with the increase in the diameter of the CNTs and is maximum on graphene. The unzipping and subsequent wrapping events are initiated and driven by van der Waals interactions between the aromatic rings of siRNA nucleobases and the CNT/graphene surface. However, dsDNA of the same sequence undergoes much less unzipping and wrapping on the CNT/graphene due to smaller interaction energy of thymidine of dsDNA with the CNT/graphene compared to that of uridine of siRNA. Unzipping probability distributions fitted to single exponential function give unzipping time (τ) of the order of few nanoseconds which decrease exponentially with temperature. From the temperature variation of unzipping time we estimate the free energy barrier to unzipping. We have also investigated the binding of siRNA to CNT by translocating siRNA inside CNT and find that siRNA spontaneously translocates inside CNT of various diameters and chiralities. Free en- ergy profiles show that siRNA gains free energy while translocating inside CNT and the barrier for siRNA exit from CNT ranges from 40 to 110 kcal/mol depending on CNT chirality and salt concentration. The translocation time τ decreases with the increase of CNT diameter having a critical diameter of 24 A for the translocation. After the optimal binding of siRNA to CNT/graphene, the complex is very stable which can serve as siRNA delivery agent for biomedical applications. Since siRNA has to undergo unwinding process in the presence of RNA-induced silencing complex, our proposed delivery mechanism by single wall CNT possesses potential advantages in achieving RNA interference (RNAi).

Page generated in 0.0791 seconds