Spelling suggestions: "subject:"borondoped"" "subject:"boronated""
11 |
Produção eletroquímica de ozônio: investigação de aspectos fundamentais e práticos / Electrochemical ozone production: investigation of fundamental and practical aspectsSantana, Mário Henrique Palis 14 April 2005 (has links)
A caracterização ex situ e in situ de eletrodos constituídos de IrO2-Nb2O5 revelou que a morfologia, a atividade eletrocatalítica para a reação de desprendimento de O2 (RDO) e a performance para a reação de formação de O3 (RFO) são fortemente dependentes da composição nominal da camada ativa. Baseados em estudos preliminares, escolheu-se a composição IrO2-Nb2O5 (45:55 % mol) para uma extensiva investigação da RDO/RFO, avaliando a influência das variáveis de preparo do eletrodo, da temperatura e da composição do eletrólito. Propôs-se um mecanismo eletródico para RDO/RFO, considerando a influência da composição do eletrólito e dos sítios ativos superficiais. Demonstrou-se que a introdução de PF6- no eletrólito de suporte aumenta significativamente o rendimento da RFO através da inibição da RDO no domínio dos elevados sobrepotenciais. O segundo material eletródico investigado foi o eletrodo de diamante dopado com boro (DDB) de origem comercial. Este material apresenta área superficial e rugosidade sensivelmente maiores que os reportados na literatura, sendo que as diversas análises demonstram um filme de boa qualidade. O pré-tratamento da superfície de DDB resulta na remoção de impurezas e na oxidação da superfície, alterando o caráter hidrofóbico do eletrodo. Sua condutividade e comportamento eletroquímico são dependentes da concentração superficial de transportadores de carga, relacionado diretamente ao potencial aplicado. Desta forma, este eletrodo de DDB altamente dopado apresenta comportamento próximo ao de um metal em potenciais mais anódicos. Os estudos cinéticos em diversos eletrólitos e temperaturas demonstram que o eletrodo de DDB caracteriza-se pela quase ausência de sítios de adsorção ? causa dos elevados sobrepotenciais e energias de ativação para a RDO. De forma surpreendente, a introdução de flúor-ânions no eletrólito resulta na diminuição da energia de ativação para a RDO e da eficiência de corrente para a RFO. Este último parâmetro é função direta da ?eletronegatividade absoluta? dos flúor-ânions. Altas concentrações de NaF alteram a condutividade do eletrólito e a hidrofobicidade do eletrodo, afetando o comportamento cinético do ânodo. Em eletrólitos contendo KPF6, entretanto, a entropia de ativação eletroquímica parece exercer um pronunciado efeito sobre a energia de ativação da RDO. No mecanismo proposto para o eletrodo de DDB, destaca-se a importância da interação entre o principal intermediário da RDO/RFO, HO·, e a superfície do filme. / Ex situ and in situ characterisation of IrO2-Nb2O5 electrodes reveal morphology, electrocatalytical activity for the oxygen evolution reaction (OER) and electrochemical ozone production (EOP) performance are strongly dependent on nominal composition of the oxide film. Based on preliminary studies, the electrode IrO2-Nb2O5 (45:55 mol%) composition was chosen to conduct an extensive OER/EOP investigation, analysing the influence of: electrode preparation procedure, temperature and electrolyte composition. An electrode mechanism for OER/EOP is proposed taking into account the influence of the electrolyte composition and the active surface sites. It is demonstrated that the introduction of PF6- into the electrolyte increases significantly the EOP performance due to inhibition of the OER in the high overpotential domain. The second electrode material investigated is a commercial sample of the boron doped diamond electrode (BDD). This material presents surface area and roughness considerably higher than those reported in literature, however several analyses demonstrate the good quality of the film. The pre-treatment of the BDD surface results in the removal of impurities and surface oxidation, which alters the hydrophobic character of the film. Its conductivity and electrochemical behaviour depend on the surface charge carriers concentration that is directly related to the applied potential. Therefore, this heavily doped BDD sample presents a behaviour resembling a metal at more anodic potentials. Kinetic investigations of several electrolytes and temperatures show BDD electrode is characterised by the almost absence of adsorption sites ? the main cause of the high overpotentials and activation energies for OER. Surprisingly, the introduction of fluoro-anions into the electrolyte results in lower activation energies for OER and lower EOP current efficiency. The latter parameter is directly related to the ?absolute electronegativity? of the fluoro-anions. High NaF concentrations modify the electrolyte conductivity and electrode hydrophobicity. However, in electrolytes containing PF6-, the electrochemical activation entropy seems to exert a pronounced effect on the activation energy for OER. In the proposed OER/EOP mechanism at BDD electrode, a key parameter is the interaction between the main intermediate, HO·, and the electrode surface.
|
12 |
Production of Expendable Reagents from Raw Waters and Industrial WastesDavis, Jake Ryan January 2014 (has links)
A couple of processes for electrosynthetic production of expendable reagents, namely acids, bases, and oxidants, from the native salt content of raw waters and industrial wastes were investigated, and the composition of mixed acids and bases made of sodium sulfate or sodium chloride salts were predicted using a model predicated on conservation principles, mass action relations, and Pitzer equations. Electrodialysis with bipolar membranes (BMED) was used to produce acids and bases in a single pass. Product concentration was limited only by the salt content of the feed water. The current efficiency for acid production was slightly higher than that for base, but neither dropped below 75%. Acid and base current utilization showed the same trends with respect to feed salt content and flow velocity, with higher efficiency at higher feed salt concentrations and flow velocities. Operating the BMED stack near the limiting current density of the bipolar membrane (BLCD) or above the limiting current density of the diluate compartment (LCD) decreased current efficiency and increased electrical power dissipation. Electrodialytic acid and base production was approximately10 times cheaper than the chemicals' f.o.b. unit costs as quoted on Alibaba.com. The mechanism and cost of on site peroxodisulfuric acid production by electrolysis of sulfuric acid solutions with boron doped diamond film anodes was investigated experimentally and with molecular dynamics (MD) and density functional theory (DFT) simulations. The cost of on site peroxodisulfate production was approximately 4 times less expensive than purchasing a 25 lb bag. It was shown that direct discharge of sulfate species produces sulfate radicals, which subsequently combined to form peroxodisulfuric acid. The likely hood of these reactions was dependent on electrode surface condition. Sulfate radicals could also be produced in solution by reaction with hydroxyl radicals generated by water discharge.
|
13 |
Electrochemical Deactivation of Nitrate, Arsenate, and TrichloroethyleneMishra, Dhananjay January 2006 (has links)
This research investigated the mechanism, kinetics and feasibility of nitrate, arsenate, and trichloroethylene inactivation on zerovalent iron (ZVI), mixed-valent iron oxides, and boron doped diamond film electrode surfaces, respectively. Nitrate ( ) is a common co-contaminant at sites remediated using permeable reactive barriers (PRBs). Therefore, understanding nitrate reactions with ZVI is important for understanding the performance of PRBs. This study investigated the reaction mechanisms of with ZVI under conditions relevant to groundwater treatment. Tafel analysis and electrochemical impedance spectroscopy were used to probe the surface reactions. Batch experiments were used to study the reaction rate of with freely corroding and cathodically protected iron wires. The removal kinetics for the air formed oxide (AFO) were 2.5 times slower than that of water formed oxide (WFO).This research also investigated the use of slowly corroding magnetite (Fe3O4) and wustite (FeO) as reactive adsorbent media for removing As(V) from potable water. Observed corrosion rates for mixed valent iron oxides were found to be 15 times slower than that of zerovalent iron under similar conditions. Electrochemical and batch and column experiments were performed to study the corrosion behavior and gain a deeper understanding on the effects of water chemistry and operating parameters, such as, empty bed contact times, influent arsenic concentrations, dissolved oxygen levels and solution pH values and other competing ions. Reaction products were analyzed by X-Ray diffraction and XPS to determine the fate of the arsenic.This research also investigated use of boron doped diamond film electrodes for reductive dechlorination of trichloroethylene (TCE). TCE reduction resulted in nearly stoichiometric production of acetate. Rates of TCE reduction were found to be independent of the electrode potential at potentials below -1 V with respect to the standard hydrogen electrode (SHE). However, at smaller overpotentials, rates of TCE reduction were dependent on the electrode potential. Short lived species analysis and density functional simulations indicate that TCE reduction may occur by formation of a surface complex between TCE and carbonyl groups present on the surface.
|
14 |
Electrochemical Behavior of Carbon Nanostructured Electrodes: Graphene, Carbon Nanotubes, and Nanocrystalline DiamondRaut, Akshay Sanjay January 2014 (has links)
<p>The primary goals of this research were to investigate the electrochemical behavior of carbon nanostructures of varying morphology, identify morphological characteristics that improve electrochemical capacitance for applications in energy storage and neural stimulation, and engineer and characterize a boron-doped diamond (BDD) electrode based electrochemical system for disinfection of human liquid waste. </p><p>Carbon nanostructures; ranging from vertically aligned multiwalled carbon nanotubes (MWCNTs), graphenated carbon nanotubes (g-CNTs) to carbon nanosheets (CNS); were synthesized using a MPECVD system. The nanostructures were characterized by using scanning electron microscopy (SEM) and Raman spectroscopy. In addition to employing commonly used electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), a new technique was developed to evaluate the energy and power density of individual electrodes. This facilitated comparison of a variety of electrode materials without having to first develop complex device packaging schemes. It was found that smaller pore size and higher density of carbon foliates on a three-dimensional scaffold of carbon nanotubes increased specific capacitance. A design of experiments (DOE) study was conducted to explore the parametric space of the MWCNT system. A range of carbon nanostructures of varying morphology were obtained. It was observed that the capacitance was dependent on defect density. Capacitance increased with defect density.</p><p>A BDD electrode was characterized for use in a module designed to disinfect human liquid waste as a part of a new advanced energy neutral, water and additive-free toilet designed for treating waste at the point of source. The electrode was utilized in a batch process system that generated mixed oxidants from ions present in simulated urine and inactivated E. Coli bacteria. Among the mixed oxidants, the concentration of chlorine species was measured and was found to correlate to the reduction in E. Coli concentration. Finally, a new operating mode was developed that involved pulsing the voltage applied to the BDD anode led to 66% saving in energy required for disinfection and yet successfully reduced E. Coli concentration to less than the disinfection threshold.</p> / Dissertation
|
15 |
Designing the Nanoparticle/Electrode Interface for Improved ElectrocatalysisYoung, Samantha 06 September 2018 (has links)
Nanoparticle-functionalized electrodes have attracted attention in areas such as energy production and storage, sensing, and electrosynthesis. The electrochemical properties of these electrodes depend upon the nanoparticle properties, e.g., core size, core morphology, surface chemistry, as well as the structure of the nanoparticle/electrode interface, including the coverage on the electrode surface, choice of electrode support, and the interface between the nanoparticle and the electrode support. Traditionally used methods of producing nanoparticle-functionalized electrodes lack sufficient control over many of these variables, particularly the nanoparticle/electrode interface.
Tethering nanoparticles to electrodes with molecular linkers is a strategy to fabricate nanoparticle-functionalized electrodes that provides enhanced control over the nanoparticle/electrode structure. However, many existing tethering methods are done on catalytically active electrode supports, which makes isolating the electrochemical activity of the nanoparticle challenging. Furthermore, previous work has focused on larger nanoparticles, yet smaller nanoparticles with core diameters less than 2.5 nm are of interest due to their unique structural and electronic properties. This dissertation addresses both of these gaps, exploring small nanoparticle electrocatalysts that are molecularly tethered to catalytically inert electrodes.
This dissertation first reviews and compares the methods of fabricating nanoparticle-functionalized electrodes with a defined molecular interface in the context of relevant attributes for electrochemical applications. Next, a new platform approach to bind small gold nanoparticles to catalytically inert boron doped diamond electrodes through a defined molecular interface is described, and the influence of the nanoparticle/electrode interface on the electron transfer properties of these materials is evaluated. The next two studies build upon this platform to evaluate molecularly tethered nanoparticles as oxygen electroreduction catalysts. The first of these two describes the systematic study of atomically precise small gold clusters, highlighting the influence of atomic level differences in the core size and the electrode support material on the catalytic properties. The second study extends the platform approach to study small bimetallic silver-gold nanoparticles produced on the electrode surface and highlights the influence of the structural arrangement of the metals on the catalytic activity. Finally, future opportunities for the field of molecularly tethered nanoparticle-functionalized electrodes are discussed.
This dissertation includes previously published and unpublished co-authored material. / 2019-01-27
|
16 |
Determination of Chromium(VI), Vanadium(V), Selenium(IV) and Zinc(II) in the City of Cape Town's potable water by stripping voltammetry at boron doped diamond electrodesFillis, Ismarelda Rosaline January 2011 (has links)
>Magister Scientiae - MSc / The main aim of this study is to investigate theelectrochemical determination of
two beneficial (selenium and zinc) and two toxic (chromium and vanadium)
metals in the potable water within the City of Cape Town's distribution area.
The Water Laboratory of the City's Scientific Services Branch analyses for these
metals in their elemental state, using the Inductively Coupled Plasma Optical
Emission Spectrometer (ICP-OES). This is a standard method used for the
detection of trace metals. The most sensitive voltammetric method for determining these metals is by adsorptive stripping voltammetry, using a thin mercury film electrode with a glassy carbon support. This voltammetric method is used for quantitative determination of specific ionic species. Because of mercury's toxicity it is not really favoured for trace metals anymore. Many other possibilities are under
investigation, e.g. bismuth-film, modified glassy carbon and antimony electrodes.
The boron-doped diamond (BDD) electrode has distinct advantages when used to
determine metal concentrations. Advantages of BDD electrodes include lower
detection limit, speciation and wider potential window. In this study cyclic
voltammetry (CV) was used to determine the copper, cadmium and lead
concentrations in potable water by means of square wave voltammetry (SWV)
and a bare glassy carbon electrode (GCE). Furthermore, a boron-doped diamond
electrode (BDDE) was used to investigate the possibilities of determining
selenium, chromium and vanadium by SWV. Real samples (potable water samples) were analysed electrochemically to qualify and quantify these metals and determine whether they comply with the SANS 241:2006 drinking water guidelines.The copper, cadmium, lead and selenium peaks appear very close to the theoretical values, which indicate that these metals can be detected by SWV method, but further analysis with more samples is advised. Even though responses were observed for vanadium and chromium, it was not reliable and requires further investigation. Further studies into the analyses of zinc are also advised.
|
17 |
Mise au point d'un dispositif électroanalytique intégrant une étape de minéralisation et une étape de détection pour le dosage des métaux lourds / Set up of an electroanalytical process including a mineralisation step and a detection step for heavy metals assayPujol, Luca 17 March 2016 (has links)
La pollution causée par le rejet industriel de métaux lourds a engendré la mise en place de réglementations concernant les concentrations en eaux de surfaces de ces polluants fortement toxiques. Des appareillages permettant la quantification des métaux lourds existent d'ores et déjà mais présentent de nombreux inconvénients comme leur coût, l'emploi d'un personnel qualifié ou encore des mesures différées dues à des échantillonnages spécifiques. L'électroanalyse représente, dans le domaine de la détection des métaux lourds, une des alternatives les plus prometteuses à ce jour.Les travaux présentés portent donc sur la mise au point d'un dispositif complet d'électroanalyse, tenant compte des problèmes de spéciation liés à la présence de la matière organique, permettant la quantification de deux métaux lourds fortement relargués par l'industrie : le plomb et le nickel. / Heavy metals industrial wastes involved the establishment of regulations concerning those toxic pollutants concentrations in surface water. Devices allowing heavy metals quantification already exist. Unfortunately, they revealed some gaps as their price, the need for qualified employees or even deferred results because of specific sampling procedures. Nowadays, in the heavy metals detection field, electroanalysis appears as a promising alternative. The work here discussed concerns the study of a global electroanalysis equipment, taking into account speciation issues related to organic matter presence, allowing heavy metals quantification in industrial runoffs of lead and nickel.
|
18 |
Emissão de eletrons por efeito de campo em diamante policristalino dopado com boro e desenvolvimento de um novo sistema de ultra alvo vacuo / Electron field emission from boron doped microcrystalline diamond and development of a new ultra high vacuum systemRoos, Mathias 12 October 2007 (has links)
Orientador: Vitor Baranauskas / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-11T10:03:42Z (GMT). No. of bitstreams: 1
Roos_Mathias_M.pdf: 4816472 bytes, checksum: 51a357faa29ccbd01723b1d6ca5abf27 (MD5)
Previous issue date: 2007 / Resumo: Na primeira parte deste trabalho amostras de diamante poli-cristalino dopado com boro foram crescidas por deposição química a vapor assistida por filamento quente. As características de emissão de campo foram investigadas. A dopagem (NB) em amostras diferentes foi variada pelo controle da concentração B/C no fluxo de gases durante o processo de crescimento. Os campos limiares (Eth) para emissão de campo foram medidos e relacionados com as concentrações B/C usadas. Assim, a influência das bordas entre os grãos, a dopagem e a morfologia da superfície na emissão de campo foram investigadas. A saturação da dopagem foi observada para altas concentrações B/C. O transporte de cargas através das bordas entre os grãos e as propriedades locais de emissão na superfície foram modeladas por dois mecanismos que afetam a emissão de campo. Correntes de emissão de 500 nA·cm-2 foram obtidas para campos elétricos de 8 V·µm-1. Na segunda parte desta tese, a construção de um novo sistema de ultra alto vácuo (UHV) para realizar medições de emissão de campo é descrita. A construção inclui o projeto integral de uma câmara de UHV com sistema de bombas, conjunto de manipuladores, suportes mecânicos e a infraestrutura do laboratório / Abstract: In the first part of this thesis, the study of field emission properties of hot filament chemical vapor deposited boron doped polycrystalline diamond is described. The doping level (NB) of different samples was varied controlling the B/C concentration in the gas feed during the growth processes. The threshold field (Eth) for electron emission in dependence on different B/C concentrations was measured and the influence of grain boundaries, doping level and surface morphology on the field emission properties was investigated. For high B/C ratios doping saturation was observed. Carrier transport through conductive grains and local emission properties of surface sites figured out to be two independent limiting effects on field emission. Emitter currents of 500 nA·cm-2 were obtained using electric fields less than 8 V·µm-1. In the second part the construction of a new UHV system for field emission measurements is described, including the complete project of a UHV chamber with pump system, manipulators and sample transfer system, mechanical supports and the infrastructural requirements of the laboratory / Mestrado / Eletrônica, Microeletrônica e Optoeletrônica / Mestre em Engenharia Elétrica
|
19 |
Produção eletroquímica de ozônio: investigação de aspectos fundamentais e práticos / Electrochemical ozone production: investigation of fundamental and practical aspectsMário Henrique Palis Santana 14 April 2005 (has links)
A caracterização ex situ e in situ de eletrodos constituídos de IrO2-Nb2O5 revelou que a morfologia, a atividade eletrocatalítica para a reação de desprendimento de O2 (RDO) e a performance para a reação de formação de O3 (RFO) são fortemente dependentes da composição nominal da camada ativa. Baseados em estudos preliminares, escolheu-se a composição IrO2-Nb2O5 (45:55 % mol) para uma extensiva investigação da RDO/RFO, avaliando a influência das variáveis de preparo do eletrodo, da temperatura e da composição do eletrólito. Propôs-se um mecanismo eletródico para RDO/RFO, considerando a influência da composição do eletrólito e dos sítios ativos superficiais. Demonstrou-se que a introdução de PF6- no eletrólito de suporte aumenta significativamente o rendimento da RFO através da inibição da RDO no domínio dos elevados sobrepotenciais. O segundo material eletródico investigado foi o eletrodo de diamante dopado com boro (DDB) de origem comercial. Este material apresenta área superficial e rugosidade sensivelmente maiores que os reportados na literatura, sendo que as diversas análises demonstram um filme de boa qualidade. O pré-tratamento da superfície de DDB resulta na remoção de impurezas e na oxidação da superfície, alterando o caráter hidrofóbico do eletrodo. Sua condutividade e comportamento eletroquímico são dependentes da concentração superficial de transportadores de carga, relacionado diretamente ao potencial aplicado. Desta forma, este eletrodo de DDB altamente dopado apresenta comportamento próximo ao de um metal em potenciais mais anódicos. Os estudos cinéticos em diversos eletrólitos e temperaturas demonstram que o eletrodo de DDB caracteriza-se pela quase ausência de sítios de adsorção ? causa dos elevados sobrepotenciais e energias de ativação para a RDO. De forma surpreendente, a introdução de flúor-ânions no eletrólito resulta na diminuição da energia de ativação para a RDO e da eficiência de corrente para a RFO. Este último parâmetro é função direta da ?eletronegatividade absoluta? dos flúor-ânions. Altas concentrações de NaF alteram a condutividade do eletrólito e a hidrofobicidade do eletrodo, afetando o comportamento cinético do ânodo. Em eletrólitos contendo KPF6, entretanto, a entropia de ativação eletroquímica parece exercer um pronunciado efeito sobre a energia de ativação da RDO. No mecanismo proposto para o eletrodo de DDB, destaca-se a importância da interação entre o principal intermediário da RDO/RFO, HO·, e a superfície do filme. / Ex situ and in situ characterisation of IrO2-Nb2O5 electrodes reveal morphology, electrocatalytical activity for the oxygen evolution reaction (OER) and electrochemical ozone production (EOP) performance are strongly dependent on nominal composition of the oxide film. Based on preliminary studies, the electrode IrO2-Nb2O5 (45:55 mol%) composition was chosen to conduct an extensive OER/EOP investigation, analysing the influence of: electrode preparation procedure, temperature and electrolyte composition. An electrode mechanism for OER/EOP is proposed taking into account the influence of the electrolyte composition and the active surface sites. It is demonstrated that the introduction of PF6- into the electrolyte increases significantly the EOP performance due to inhibition of the OER in the high overpotential domain. The second electrode material investigated is a commercial sample of the boron doped diamond electrode (BDD). This material presents surface area and roughness considerably higher than those reported in literature, however several analyses demonstrate the good quality of the film. The pre-treatment of the BDD surface results in the removal of impurities and surface oxidation, which alters the hydrophobic character of the film. Its conductivity and electrochemical behaviour depend on the surface charge carriers concentration that is directly related to the applied potential. Therefore, this heavily doped BDD sample presents a behaviour resembling a metal at more anodic potentials. Kinetic investigations of several electrolytes and temperatures show BDD electrode is characterised by the almost absence of adsorption sites ? the main cause of the high overpotentials and activation energies for OER. Surprisingly, the introduction of fluoro-anions into the electrolyte results in lower activation energies for OER and lower EOP current efficiency. The latter parameter is directly related to the ?absolute electronegativity? of the fluoro-anions. High NaF concentrations modify the electrolyte conductivity and electrode hydrophobicity. However, in electrolytes containing PF6-, the electrochemical activation entropy seems to exert a pronounced effect on the activation energy for OER. In the proposed OER/EOP mechanism at BDD electrode, a key parameter is the interaction between the main intermediate, HO·, and the electrode surface.
|
20 |
Diffusion of Lithium in Boron-doped Diamond Thin FilmsBerggren, Elin January 2020 (has links)
In this thesis, the diffusion of lithium was studied on boron-doped diamond (BDD) as a potential anode material in lithium ion batteries (LIB). The initial interaction between deposited lithium and BDD thin films was studied using X-ray Photoelectron Spectroscopy (XPS). Diffusion is directly linked to reactions between lithium and carbon atoms in the BDD-lithium interface. By measuring binding energies of core-electrons of carbon and lithium before and after deposition, these reactions can be analyzed. Scanning Electron Microscopy (SEM) was used to study the BDD surface and the behaviour of deposited lithium. Experiments show that a chemical interaction occurs between lithium and carbon atoms in the surfacelayers of the BDD. The diffusion of lithium is discussed from spectroscopic data and suggests that surface diffusion is occurring and no proof of bulk diffusion was found. The results do not exclude bulk diffusion in later states but it was not found in the initial interaction at the interface after depositing lithium. SEM images show that lithium clusters in the nanometer range are formed on the BDD surface. The results of this study give insights in the initial diffusion behaviour of lithium at the BDD interface and possible following events are discussed.
|
Page generated in 0.0386 seconds