• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 5
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 89
  • 79
  • 22
  • 19
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

The Influence of Genetic Variation on Susceptibility of Common Bottlenose Dolphins (<italic>Tursiops truncatus</italic>) to Harmful Algal Blooms

Cammen, Kristina Marstrand January 2014 (has links)
<p>The capacity of marine organisms to adapt to natural and anthropogenic stressors is an integral component of ocean health. Harmful algal blooms (HABs), which are one of many growing threats in coastal marine ecosystems, represent a historically present natural stressor that has recently intensified and expanded in geographic distribution partially due to anthropogenic activities. In the Gulf of Mexico, HABs of <italic>Karenia brevis</italic> occur almost annually and produce neurotoxic brevetoxins that have been associated with large-scale mortality events of many marine species, including the common bottlenose dolphin (<italic>Tursiops truncatus</italic>). The factors resulting in large-scale dolphin mortality associated with HABs are not well understood, particularly in regards to the seemingly different impacts of HABs in geographically disjunct dolphin populations. My dissertation investigates a genetic basis for resistance to HABs in bottlenose dolphins in central-west Florida and the Florida Panhandle. I used both genome-wide and candidate gene approaches to analyze genetic variation in dolphins that died putatively due to brevetoxicosis and live dolphins from the same geographic areas that survived HAB events. Using restriction site-associated DNA sequencing, I identified genetic variation that suggested both a common genetic basis for resistance to HABs in bottlenose dolphins across the Gulf coast of Florida and regionally specific resistance. Many candidate genes involved in the immune, nervous, and detoxification systems were found in close genomic proximity to survival-associated polymorphisms throughout the bottlenose dolphin genome. I further investigated two groups of candidate genes, nine voltage-gated sodium channel genes selected because of their putative role in brevetoxin binding and four major histocompatibility complex (MHC) loci selected because of their genomic proximity to a polymorphism exhibiting a strong association with survival. I found little variation in the sodium channel genes and conclude that bottlenose dolphins have not evolved resistance to HABs via mutations in the toxin binding site. The immunologically relevant MHC loci were highly variable and exhibited patterns of genetic differentiation among geographic regions that differed from neutral loci; however, genetic variation at the MHC also could not fully explain variation in survival of bottlenose dolphins exposed to HABs. In my final chapter, I consider the advantages and drawbacks of the genome-wide approach in comparison to a candidate gene approach and, as laid out in my dissertation, I recommend using both complementary approaches in future investigations of adaptation in genome-enabled non-model organisms.</p> / Dissertation
82

Abundance, behaviour and habitat use patterns of Indo-Pacific bottlenose dolphins (<em>Tursiops aduncus</em>) in the Clarence and Richmond River estuaries in northern New South Wales, Australia

Fury, Christine Ann Unknown Date (has links)
Bottlenose dolphins (Tursiops spp.) are a widely studied species in marine habitats, however, information on estuarine populations in Australia is very limited. To fully understand the importance of estuaries as habitats for dolphins there needs to be clear quantitative data on dolphin populations and their habitat use in estuaries. This study provides the first published data on Indo-Pacific bottlenose dolphins (Tursiops aduncus) abundance estimates, site fidelity, individual ranging patterns, habitat use, flood impacts and sexual segregation patterns over a 3- year period in the Clarence River (CR) and Richmond River (RR) estuaries in northern New South Wales, Australia.The results indicate that, at present, the CR estuary is sustaining a larger dolphin community with a predominantly resident population compared to the RR estuary, which supports a smaller community with lower site fidelity. The CR estuary dolphin abundance estimate of 71 (62-81 95% CI, CV = 0.07) is more than twice the size of the RR estuary abundance estimate of 34 (19- 49 95% CI, CV = 0.23). Differences in site fidelity were observed between the estuaries with 60% and 37% of identified dolphins determined as residents, 26% and 21% as occasional visitors, and 14% and 42% as transients for the CR and RR, respectively. Resource partitioning was apparent in both estuaries with the mean distance resident dolphins were found upstream from the River mouth being greater than for the occasional visitors and transients.Tursiops aduncus was seen all year round in the CR and RR estuaries, with peak sightings occurring in spring at both sites. In the CR the dolphin population showed consistent seasonal fluctuations, whereas this did not occur in the RR population. In the CR the largest spatial distribution of dolphins in the estuary was observed in spring and winter, while in summer they were primarily restricted to the main estuary channel. Different behaviours that were observed; feeding, socialising, travelling, and milling and resting, were found to be influenced by season, tidal phase and tidal range. In both estuaries the core habitat areas used by the population for feeding consisted of areas with considerable slope near the edge of tidal sand banks, adjacent to deeper channels at the entrances of canals, creeks or artificial breakwalls. In addition, the core habitat areas used by the population for milling and resting behaviour in both estuaries occurred in shallow, sheltered areas, often associated with seagrass beds. Socialising occurred more frequently in the CR throughout most of the deeper waters of the estuary, whereas in the RR it was primarily restricted to a small area of medium depth in the estuary.The major determinant of T. aduncus occupancy in the two estuaries was the flood events that occurred, which resulted in the dolphins abandoning the estuary. The mean predicted probabilities for sighting dolphins during non-flood periods were 0.87 and 0.71, during a flood 0.21 and 0.04, and during a post-flood recovery period 0.83 and 0.80 in the CR and RR, respectively. Principal Components Analysis (PCA) showed that when the dolphins were absent from the estuaries, three components were extracted from the water quality parameters in the CR, and two components in the RR. High loadings from the PCA were associated with the changing salinity, turbidity, pH, dissolved oxygen and temperature associated with the flood events. The return of the dolphins to the estuary following a flood depended on the length and severity of the flood event, but generally the dolphins seemed to prefer waters with salinity levels above 29 ‰. This could be associated with higher salinities being important for their physiological health, or because their prey returned to the estuaries during these higher salinity conditions, more likely a combination of both of these factors.Sexual segregation patterns were observed in T. aduncus populations with mixed gender and female groups mainly recorded in the CR, whereas in the RR female groups dominated the estuary. In the CR, significant differences occurred in sightings between the mixed and female groups in relation to water depth and behaviour. Mixed gender groups were sighted predominantly in deeper water and were involved in social behaviour including sexual behaviour and male herding of females. In contrast, the female groups were observed across all water depths, predominately feeding and also participating in more milling and resting behaviours.The high occurrence of aggressive herding behaviour by males in the CR was significantly different at varying depths, tides and seasons, occurring more often in deeper water, at higher tides and in non-breeding seasons. Female groups were found to utilise the small, shallow tributaries and travel for longer distances up these smaller tributaries than the mixed groups, which were concentrated in the deeper main channel of the estuary.The deeper water of the channels may facilitate the males in herding the females, while the female groups’ habitat selection of shallow estuary areas may provide a sanctuary from aggressive males, access to suitable prey items or prey density for mothers and their calves, or a combination of these factors.This study has provided the first detailed research on T. aduncus dolphin population dynamics, habitat use, occupancy and sexual segregation patterns in two Australian subtropical estuaries. To ensure the long-term survival of both of these dolphin populations, management of future increased anthropogenic disturbances from boat traffic, pollution, dolphin watching, industrial or urban development, over-fishing and habitat degradation of the catchment is needed. Good quality water conditions, the protection of the core feeding areas and small shallow tributaries for females and their calves, and sheltered areas for resting behaviour all need to be maintained for the continued conservation of these important dolphin populations.
83

Abundance, behaviour and habitat use patterns of Indo-Pacific bottlenose dolphins (<em>Tursiops aduncus</em>) in the Clarence and Richmond River estuaries in northern New South Wales, Australia

Fury, Christine Ann Unknown Date (has links)
Bottlenose dolphins (Tursiops spp.) are a widely studied species in marine habitats, however, information on estuarine populations in Australia is very limited. To fully understand the importance of estuaries as habitats for dolphins there needs to be clear quantitative data on dolphin populations and their habitat use in estuaries. This study provides the first published data on Indo-Pacific bottlenose dolphins (Tursiops aduncus) abundance estimates, site fidelity, individual ranging patterns, habitat use, flood impacts and sexual segregation patterns over a 3- year period in the Clarence River (CR) and Richmond River (RR) estuaries in northern New South Wales, Australia.The results indicate that, at present, the CR estuary is sustaining a larger dolphin community with a predominantly resident population compared to the RR estuary, which supports a smaller community with lower site fidelity. The CR estuary dolphin abundance estimate of 71 (62-81 95% CI, CV = 0.07) is more than twice the size of the RR estuary abundance estimate of 34 (19- 49 95% CI, CV = 0.23). Differences in site fidelity were observed between the estuaries with 60% and 37% of identified dolphins determined as residents, 26% and 21% as occasional visitors, and 14% and 42% as transients for the CR and RR, respectively. Resource partitioning was apparent in both estuaries with the mean distance resident dolphins were found upstream from the River mouth being greater than for the occasional visitors and transients.Tursiops aduncus was seen all year round in the CR and RR estuaries, with peak sightings occurring in spring at both sites. In the CR the dolphin population showed consistent seasonal fluctuations, whereas this did not occur in the RR population. In the CR the largest spatial distribution of dolphins in the estuary was observed in spring and winter, while in summer they were primarily restricted to the main estuary channel. Different behaviours that were observed; feeding, socialising, travelling, and milling and resting, were found to be influenced by season, tidal phase and tidal range. In both estuaries the core habitat areas used by the population for feeding consisted of areas with considerable slope near the edge of tidal sand banks, adjacent to deeper channels at the entrances of canals, creeks or artificial breakwalls. In addition, the core habitat areas used by the population for milling and resting behaviour in both estuaries occurred in shallow, sheltered areas, often associated with seagrass beds. Socialising occurred more frequently in the CR throughout most of the deeper waters of the estuary, whereas in the RR it was primarily restricted to a small area of medium depth in the estuary.The major determinant of T. aduncus occupancy in the two estuaries was the flood events that occurred, which resulted in the dolphins abandoning the estuary. The mean predicted probabilities for sighting dolphins during non-flood periods were 0.87 and 0.71, during a flood 0.21 and 0.04, and during a post-flood recovery period 0.83 and 0.80 in the CR and RR, respectively. Principal Components Analysis (PCA) showed that when the dolphins were absent from the estuaries, three components were extracted from the water quality parameters in the CR, and two components in the RR. High loadings from the PCA were associated with the changing salinity, turbidity, pH, dissolved oxygen and temperature associated with the flood events. The return of the dolphins to the estuary following a flood depended on the length and severity of the flood event, but generally the dolphins seemed to prefer waters with salinity levels above 29 ‰. This could be associated with higher salinities being important for their physiological health, or because their prey returned to the estuaries during these higher salinity conditions, more likely a combination of both of these factors.Sexual segregation patterns were observed in T. aduncus populations with mixed gender and female groups mainly recorded in the CR, whereas in the RR female groups dominated the estuary. In the CR, significant differences occurred in sightings between the mixed and female groups in relation to water depth and behaviour. Mixed gender groups were sighted predominantly in deeper water and were involved in social behaviour including sexual behaviour and male herding of females. In contrast, the female groups were observed across all water depths, predominately feeding and also participating in more milling and resting behaviours.The high occurrence of aggressive herding behaviour by males in the CR was significantly different at varying depths, tides and seasons, occurring more often in deeper water, at higher tides and in non-breeding seasons. Female groups were found to utilise the small, shallow tributaries and travel for longer distances up these smaller tributaries than the mixed groups, which were concentrated in the deeper main channel of the estuary.The deeper water of the channels may facilitate the males in herding the females, while the female groups’ habitat selection of shallow estuary areas may provide a sanctuary from aggressive males, access to suitable prey items or prey density for mothers and their calves, or a combination of these factors.This study has provided the first detailed research on T. aduncus dolphin population dynamics, habitat use, occupancy and sexual segregation patterns in two Australian subtropical estuaries. To ensure the long-term survival of both of these dolphin populations, management of future increased anthropogenic disturbances from boat traffic, pollution, dolphin watching, industrial or urban development, over-fishing and habitat degradation of the catchment is needed. Good quality water conditions, the protection of the core feeding areas and small shallow tributaries for females and their calves, and sheltered areas for resting behaviour all need to be maintained for the continued conservation of these important dolphin populations.
84

Changes in Tursiops truncatus Distribution and Behavior in the Drowned Cayes, Belize, and Correlation to Human Impacts

Garcia, Jazmin 22 July 2016 (has links)
Human interaction greatly influences the behavior and distribution of bottlenose dolphins (Tursiops truncatus). This project focuses on the distribution and behavior of bottlenose dolphins in the Drowned Cayes, Belize. Prior to the 2000s, the area was relatively undeveloped and undisturbed and had minimal human activity. Since the turn of the millennium, development and ecotourism activity has flourished in the area, increasing by more than 800,000 visitors from 1998-2006. Boat-based surveys were conducted in 2015 and were combined with previous survey data collected from 2005-2012 and compared to behavioral survey results from 1999-2000. Total dolphin observation time as a percent of total survey time and average number of dolphins per sighting were 17.2% and 2.7 in 1999-2000 and 10.8% and 1.6 for 2005-2015. The low number of dolphins and the low observation times suggest that the dolphin population in the Drowned Cayes have decreased since the 1990s. Eighty-nine percent of the total observation time for 2015 occurred on days in which there were zero cruise ships in the area suggesting that this decline may be in relation to increased human activity. Furthermore, foraging was the main behavior observed for both 1999-2000 and 2005-2015 data sets, suggesting that the Drowned Cayes area is used as a foraging ground. However, in 1999-2000 the foraging percentage was significantly higher than the 2005-2015 data set, dropping 28.9% and there was a 23.6% increase in traveling behavior between the two data sets. This could be a result of increased human activity. Additionally, survey photographs and results were used in the creation of the first dolphin photo identification database for the country. The guidelines used for photo analysis for photo quality and fin distinctiveness were tested to determine if they are easy to use and give consistent and reliable results regardless of judge. An intraclass correlation model calculated substantial agreement (ICC = 0.7) between judges’ scores, demonstrating consistent results, regardless of experience level. Therefore, the guideline can be used as a standard among multiple researchers.
85

The Soundscape of the St. Johns River and its Potential Impacts on the Habitat Use Patterns of Bottlenose Dolphins

King, Carissa DeeAnn 01 January 2017 (has links)
The development of effective management plans for animal populations relies on an understanding of how the population is utilizing the habitat as well as the identification of any critical habitat areas. The St. Johns River (SJR), an urban estuary with a high level of anthropogenic disturbance, is home to a resident population of bottlenose dolphins (Tursiops truncatus). In chapter one, SJR dolphin habitat use patterns, the factors that influenced these patterns, and the critical habitat areas were identified. Significant associations were found in most pair-wise comparisons between season, behavioral state, group size, water depth, and location, indicating that the overall habitat use patterns of SJR dolphins were influenced by complex interactions among these variables. Additionally, two critical habitat areas were identified. Both critical habitats had high levels of anthropogenic activity and the SJR will undergo further development during the Jacksonville Port expansion project. In conjunction with increasing levels of activity, anthropogenic sound can have numerous effects on cetaceans including the masking of signals, alterations in behavior, abandonment of critical habitats, and physiological stress. In chapter two, the soundscape of the SJR was characterized to evaluate the potential impacts of anthropogenic sound on SJR dolphins. Sound levels in the SJR were consistently high and anthropogenic sound was pervasive throughout the river. Therefore, the dolphins in the SJR are at risk of experiencing long-term behavioral and physiological stress due to anthropogenic sound. Together, this work provides valuable knowledge about dolphin habitat use and the soundscape ecology of an urbanized estuary that will enable more informed management decisions and hopefully lead to more effective conservation practices.
86

The Whistle caller concept - Signature whistles as call-over signals for Bottlenose dolphins (Tursiops truncatus) under human care

Rylander, Tilde January 2021 (has links)
Dolphins use stereotyped, individually distinctive, frequency modulated whistles, referred to as signature whistles, in order to broadcast their identity. In this study, we trained six dolphins at Kolmården Zoo, Sweden, to be called over, either upon hearing their own signature whistle (SW) or upon hearing a biologically irrelevant ”trivial” sound (TS), with the aim to prove the Whistle caller concept. The Whistle caller concept is based on the fact that dolphins occasionally use other dolphins’ signature whistles in order to address specific group members and convene.  Our hypotheses were that (1) dolphins call-over trained using their SW would learn the behaviour faster than dolphins trained using TSs, and (2) dolphins trained with their SW would be able to discriminate between different SWs better than dolphins trained with a TS would be at discriminating between different TSs.  Three out of three dolphins were successfully call-over trained using their SW, and two out of three dolphins using their assigned TS. When discriminating between different sounds, two of the dolphins trained using their SW performed significantly better than one of the dolphins trained using a TS. However, there were large intra-group differences in the results, indicating that we cannot eliminate the possibility that these results stem from individual differences in these dolphins’ ability to learn new behaviours overall, rather than an understanding of the sounds they heard. We suggest that future studies focus on (1) male-female differences in discrimination success when applying the Whistle caller concept, (2) how the characteristics of the trivial sounds affect discrimination success, and (3) the option of calling more than one animal at a time by sending out several SWs in succession.
87

Structure and Function of Male Bottlenose Dolphin Alliances in Northeast Florida

Karle, Kristin A 01 January 2016 (has links)
Bottlenose dolphins exhibit fission-fusion social systems in which group size and composition change fluidly throughout the day. Societies are typically sexually segregated, and the quality and patterning of individual relationships in this social species shape the social structure of a population. Female dolphins usually have a large network of associates with whom they form recurring moderate bonds, while male associations are highly variable due to their mating strategies. Males employ one of two strategies; males may be solitary, and encounter and herd females individually, while others may form strong bonds with one to two other males and cooperatively herd individual females in the shape of a first-order alliance. Second-order alliances are more uncommon and have only been observed in Shark Bay, Australia, and more recently within the St. Johns River (SJR), Jacksonville, Florida. Given the inter-population variation in male mating strategies, greater documentation of social structure in neighboring populations along the Atlantic coast is needed. Therefore, chapter one documents the social structure of the Indian River Lagoon (IRL) estuarine system where dolphins have experienced recurrent cetacean morbillivirus (CeMV) epizootics. Although environmental disturbances can affect both social and mating systems, IRL dolphin sociality does not seem to be affected by the 2008 CeMV mass mortality event. Additionally, males only form first-order alliances within this population. Because multi-level alliances are unique to the SJR in this region, chapter two analyzes the stability and function of SJR alliances. Both first- and second-order alliances exhibited variation in stability, while alliance association appears dependent on female presence. Thus, SJR alliances likely function within a reproductive context. Together, this work provides insight into the social and mating systems of bottlenose dolphins, as well as the function of multi-level alliances at a relatively new study site.
88

Natural and human impacts on habitat use of coastal delphinids in the Mossel Bay area, Western Cape, South Africa

James, B.S. (Bridget) 01 1900 (has links)
The south coast of South Africa represents the extreme western end of the range of the Indo-Pacific humpback (Sousa chinensis, plumbea type) and Indo-Pacific bottlenose dolphins (Tursiops aduncus), which are both confirmed to range as far west as False Bay (Jefferson & Karczmarski, 2001; Hammond et al., 2008). Individual ranging behaviour for both species however is not well resolved. Recent genetic analyses suggest that animals currently considered as plumbea type Sousa chinensis (Reeves et al., 2008) may be a separate species, Sousa plumbea (Mendez et al., 2013). In South African waters less than 1000 adult humpback dolphins (Sousa chinensis, plumbea type hereafter “humpback dolphin”) may comprise the entire population (Karczmarski, 1996), while all estimates suggest the bottlenose dolphin (Tursiops aduncus, hereafter “bottlenose dolphins”) population is relatively large, numbering thousands of animals (Cockcroft et al., 1992; Reisinger & Karczmarski, 2010). Both dolphin species are exposed to variable levels of anthropogenic impacts throughout their range including vessel traffic, chemical pollution and habitat degradation associated with coastal development. This thesis describes the results of a study investigating: 1) the environmental and anthropogenic factors which influence the habitat use of humpback and bottlenose dolphins in two adjacent bays on the southern Cape coast, South Africa – Mossel Bay and Vlees Bay; 2) the abundance of humpback dolphins using Mossel Bay and 3) the interaction of these two dolphin species with white sharks, and the influence this has on dolphin group sizes and habitat use in Mossel Bay. Both land-based and boat-based survey platforms were used in this study with land-based data collected during dedicated watch periods at sites in Mossel Bay (n = 6) and Vlees Bay (n = 4) between February 2011 and March 2013, with a focus on humpback and bottlenose dolphins. A surveyor’s theodolite was used at these sites to collect positional data on animals, while behavioural data were collected through direct observation. Boat-based photographic identification surveys were used to collect data on the presence of individual humpback dolphins in Mossel Bay between April 2011 and November 2013. White shark data from Mossel Bay between February 2011 and March 2013 were provided from boat-based chumming surveys for the collection of photo-ID data from the Master’s thesis of Rabi’a Ryklief, based at Oceans Research. Data were analysed using ANOVA’s, Tukey honest significance tests and generalised additive modelling (Wood, 2006) in programme R, while capture histories of humpback dolphins were analysed with RMark (Laake, 2013) using POPAN open population models (Schwarz & Arnason, 1996) and Huggins heterogeneity closed capture models (Huggins, 1989; Chao et al., 1992). Humpback dolphins socialised over sandy beach habitats in both bays, while feeding/foraging occurred over reef systems in Mossel Bay and off fine grained sandy beach habitats in Vlees Bay. Humpback dolphin resting behaviour was observed at a very low frequency and occurred in all of the primary habitat types in Mossel Bay, while in Vlees Bay resting was only observed over reefs. Bottlenose dolphins in both bays preferentially used wave cut rocky platform habitats for feeding/foraging and resting while socialising occurred in the vicinity of estuaries in Mossel Bay and fine grained sandy beach habitats in Vlees Bay. Higher sighting rates were recorded in the control site, Vlees Bay, than in Mossel Bay for both dolphin species. The largest reverse osmosis desalination plant commenced operations in the sheltered corner of Mossel Bay in October 2011 and discharged approximately five million litres (Ml) of effluent per day (between October 2011 and February 2012) and 18 Ml per day in March and April 2012. In Mossel Bay higher sighting rates of humpback dolphins occurred in the period before desalination began while bottlenose dolphin sighting rates were highest after active desalination decreased to once per month (May, 2012). During the period of peak brine discharge in Mossel Bay, sighting rates were highest for both species in Vlees Bay. Even after desalination operations decreased the sighting rate of humpback dolphins remained low. The operation of the desalination plant at full capacity in Mossel Bay may have led to reduced use of this area by both humpback and bottlenose dolphins. Key habitats in Mossel Bay for both dolphin species are shared with great white sharks (Carcharodon carcharias hereafter “white sharks”) and focus around the three estuaries and their associated near-shore reef systems. The presence of predatory white sharks may limit the time dolphins spend in a specific habitat and influence the number of animals within groups, with larger humpback dolphin groups at sites with high shark utilisation. Both dolphin species had lower individual sighting rates during periods when white shark abundance peaked. Large group sizes of humpback dolphins at Seal Island, and of bottlenose dolphins at Hartenbos and Tergniet, combined with increased rates of travelling and decreased resting and socializing suggest that these areas may pose the largest threat to dolphins due to the variety of shark size classes’ present, especially larger sharks. Closed capture models generated within year population estimates ranging from 48 to 97 individual humpback dolphins (2011: 97, 95% CI: 46 – 205; 2012: 48, 28 – 81; 2013: 68, 35 – 131) while open population modelling produced a ‘super-population’ estimate of 116 animals (95% CI: 54 – 247) using Mossel Bay. During the study 67 humpback dolphins were individually identified with 94.3 % of the individuals in good quality photographs distinctively marked. Fewer humpback dolphins may be present on the south-east and southern Cape coast, including between Algoa Bay and Mossel Bay, than initially thought (Karczmarski, 1996), as definite links exist between Algoa Bay and Plettenberg Bay (Smith-Goodwin, 1997), and Plettenberg Bay and Mossel Bay (this study). The Gouritz River mouth (21º 53' E; Ross, 1984) and De Hoop (20º 30' E; Findlay et al., 1992) were previous suggested as the western limit of this species, but within the last 20 years knowledge on the extent of their range has been greatly improved, and range extension of this species may be occurring to the west with animals present as far west as False Bay (18º 48' E; Jefferson & Karczmarski, 2001). Due to the vulnerability of this species and their wide ranging behaviour, conservation plans need to be implemented on a wide scale to ensure protection of these animals from human impacts throughout their range. A concerted effort is required to further establish the population links between the various locations on the southern Cape coast that these animals frequent. / Dissertation (MSc)--University of Pretoria, 2014. / Zoology and Entomology / MSc / Unrestricted
89

Reproductive Biology of the Female Bottlenose Dolphin (Tursiops Truncatus)

Muraco, Holley Stone 11 December 2015 (has links)
The goal of this long-term study was to better understand the reproductive biology of the female bottlenose dolphin (Tursiops truncatus) and provide a hypothesis for how dolphins may communicate reproductive readiness to one another. Utilizing conditioned dolphins in aquaria, this dissertation examined several previously unknown aspects of dolphin reproduction, including ovarian follicular dynamics during the luteinizing hormone surge, urinary prolactin levels, estrus behavior, vaginal fluid arboriform arrangement, in-situ vaginal and cervical anatomy during estrus, reversed-phase high-performance liquid chromatography (RP-HPLC) of urine samples to identify proteins and peptides that may be used in chemical communication, and a review and anatomical analysis of dolphin vibrassal crypts. The diffusely seasonal dolphin estrous cycle is not controlled by photoperiod and has a 10-day follicular and 20-day luteal phase. A brief ovulatory LH surge is followed by ovulation within 48 hours. An ethogram of 20 reproductive behaviors was developed, and all occurrences of reproductive behavior were analyzed during conceptive estrous cycles. A novel form of standing heat estrus, termed immobility, was observed, and estrus dolphins displayed genital nuzzling, active and passive mounting with other females, and an increase of standing heat intensity as LH levels rose. Prolactin plays a role in pregnancy maintenance, mammary development, allo-mothering behavior, lactation, and lactational anestrus. Dolphins are similar to sows where weaning causes a return to estrus, and in the boar effect, where days to ovulation are shortened in the presence of a mature male. Dolphin vaginal fluid showed crystallization arrangements with large open mesh patterns, conducive to sperm transport, during the estrogenic follicular phase, and closed mesh during the luteal phase. RP-HPLC analysis revealed that urine contained large amounts of peptides and proteins with peaks that change throughout the estrous cycle and with changes in social grouping. Remnant vibrissae from dolphin follicular crypts were sectioned, and it was hypothesized that trigeminal nerve endings could act similarly to those found in the nasal mucosa of terrestrial species and respond to chemical stimuli. This study provides new data to better understand the reproductive biology of a holaquatic mammal.

Page generated in 0.0557 seconds