• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 28
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 1
  • 1
  • Tagged with
  • 81
  • 81
  • 49
  • 37
  • 35
  • 30
  • 26
  • 24
  • 23
  • 22
  • 19
  • 17
  • 17
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Přemostění přehrady / Bridging reservoir

Kučerka, Ján Unknown Date (has links)
The diploma thesis deals with the design of the supporting structure of a road bridge over a reservoir. Two variants of bridging were processed. The selected variant is a three span continuous beam. It is made of box girder cross section with a variable height. The structure has a total length of 156,8 m and is built using balanced cantilever method. The bridge is designed and assessed according to the limit states for temporary and permanent design situations. Structural analysis, drawing documentation and visualization of the bridge is part of the work.
72

Analysis and Design of Ultra-High-Performance Concrete Shear Key for PrecastPrestressed Concrete Adjacent Box Girder Bridges

Hussein, Husam H. 19 June 2018 (has links)
No description available.
73

Spojitá betonová mostní konstrukce / Continuous concrete bridge structure

Zemánek, Tomáš January 2018 (has links)
The diploma thesis is focused on solving road bridge situated between Roudno and Razová village over the water basin Slezská Harta. Before the design itself 3 studies were created and compared together. The selected variant is a continuous box girder with inclined walls, post-tensioned by bonded cables. The girder of a total lenght 148,0 m and width 13,6 m is divided into three spans. Height of the girder is 3,3 m. A detailed structural design, including construction limit state assessment, prestress design and time dependent analysis verification is processed. The design and the assessments of temporary and permanent situations are made according to valid standarts and regulations. Drawings and vizualizations are parts of the diploma thesis.
74

Návrh předpjatého komorového mostu / Design of prestressed box gireder bridge

Hofírek, Radovan January 2013 (has links)
This thesis deals with bridging of a lowland valley and the creek Dolanský in the section Jánovce – Jablonov on the Slovak motorway D1. Four variants of the bridge have been developed. Subsequently prestressed single box gilder with large overhangs that are supported by precast struts was selected as the most suitable variant. The construction of the bridge will take place in a formwork suspended on overhead launching scaffolding. The static assessment according to the Europan standard has been drawn up for this variant. The load of the bridge is projected according to the ČSN EN 1991-2 - Traffic loads on bridges and the dimensoin of concrete structures according to the ČSN EN 1992-2 - Concrete bridges - Design and detailing rules. The calculation of load is done using computer software SCIA Engineer 10.1 and Midas Civil.
75

Most komorového průřezu / Bridge formed by cell box girder

Zifčák, Karel January 2016 (has links)
The subject of this thesis is the design and assessment of the bridge construction across the deep valley on highway traffic. From three variants, which were compared to each other, was the most suitable further examined. The solved structure is made of post-tensioned concrete, and is formed with cell box girder with transverse overhangs, which are supported by prefabricated struts over the length of the bridge. The load was considered by the European Standard EN 1991-2 - Traffic loads on bridges and dimensioning according to EN 1992-2-Design of concrete structures - Concrete bridges - Design and detailing rules.
76

Dálniční most přes široké údolí / Highway bridge over wide wally

Mertová, Eliška January 2017 (has links)
The aim of this diploma thesis was the design of three possible variants, how to span the wide and deep valley with a bridge. After an evaluation, situation of the highway on the only wide load-bearing structure which is constituted by a box girder with transverse cantilevers supported by prefabricated bar braces, was chosen as an optimal solving. The load- bearing structure made of post- tensioned concrete is going to be incrementally launched and be supported by one-column pillars along an axis of the motorway. The work is composed of a detailed design of this preferred variant, which is processed according to the ultimate and serviceability limit state including the construction stage analysis of the bridge by the construction technology by an incremental launching method.
77

Dálniční estakáda přes široké údolí / Highway multispan bridge over wide wally

Bobek, Lukáš January 2017 (has links)
The aim of this diploma thesis is to design and assess highway bridge. The structure is located on the D1 motorway section bridging a wide valley between the Slovak villages Doľany a Klčov. Three variants have been created – box girder bridge with transverse overhangs, a pair of girder bridge and a pair of box girder bridges. The various proposals were compared with each other. For the most valuable option is selected prestressed box girder bridge with transverse overhangs, which are supported by prefabricated concrete struts. The selected proposal was subsequently elaborated in detail, the load-bearing structure is analyzed using Scia Engineer 16. In calculating the internal forces is adjusted for the effects of construction methods, even as time-dependent analysis TDA. When designing the load-bearing structure it is considered the action of permanent load, also loading from transport and temperature. The structure is assessed for serviceability and ultimate limit states according to current standards. The bridge deck is built by incremental launching method. The principle of this method consists of building the segments in a casting yard located behind the bridge abutment. Each segment is matchcast against the previous one and prestressed to the section of structure already built. The whole superstructure is then jacked forward a distance equal to the length of this segment. This process is repeated until the bridge deck is in its final position. Chosen method of construction is very fast and efficient, to the country in the valley isn´t damage during construction.
78

Lávka přes Labe / Footbridge across the Labe

Krč, Rostislav January 2017 (has links)
The thesis focuses on design of prestressed concrete footbridge which passes pedestrian and bicycle path over the Elbe river near city of Celakovice in the Czech Republic. Three different bridge options were analyzed and for further development a cable-stayed footbridge was chosen. Its bridge deck is formed of a box girder supported by cables in its vertical axis and all cable stays are anchored into two concrete A-shaped pylons. This structure was analyzed in SCIA Engineer and assessment of serviceability limit states and ultimate limit states according to recent European standards (Eurocodes) was made. Both the global structural behavior and the local structural integrity of box cross-section were assessed as well as construction stages and cross-sections of pylons and cable stays. Assessments were performed in IDEA StatiCa combined with hand calculations. Eventually a dynamic response of structure was analyzed. Natural modes and frequencies were found and forced oscillation response was evaluated. The thesis includes technical drawings, construction process and visualization.
79

Dálniční vícepolový most / Multi-span highway bridge

Doležal, Lukáš January 2022 (has links)
The subject of diploma thesis is designing multi-span highway bridge over Řepovský potok valley, dirt roads and biocorridor. Three variants of bridge were designed and one of them – box girder 10 span bridge, has been chosen. Bridge deck is made from cast in place post tension prestressed beam. Load-bearing structure is concreting step by step on fixed and moving support. Total length of bridge is 560 m. The analysis of structure was projected on several computational models. They have been made in software Midas Civil and SCIA Engineer 18.1. The assessments of ultimate limit state and serviceability limit state were made in all steps of building in longitudinal and cross direction. In the analysis in longitudinal direction is included the time dependent analysis. Structural design was made in software MS Excel according to valid standards. Finally, drawing documentation and visualization were made.
80

Long-term deformation of balanced cantilever bridges due to non-uniform creep and shrinkage / Långtidsdeformationer hos freivorbau-broar orsakade av ojämn krypning och krympning

Akbar, Sidra, Carlie, Mathias January 2021 (has links)
Balanced cantilever bridges have historically experienced excessive deformations. Previous researchsuggeststhat the cause may be due to differential thickness in the box girder cross-section and underestimation of creep and shrinkage.In this project, the long-term deformationof balanced cantilever bridges due tonon-uniformcreep and shrinkage have been investigated. The non-uniformcreep and shrinkage arecaused by variations in drying rates for the different parts of the box-girder cross-sections.A finite element model was createdintheprogram Abaqusas a case study of the Alvik bridge.The finite element model was used to evaluate the difference betweennon-uniform and uniform creep and shrinkage with Eurocode 2.Further, a comparison between Eurocode 2 and Bažant’sB4 modelwas conductedfor non-uniform creep and shrinkage. The comparison aimedto evaluate the difference between industry and research specific calculation models, forthe effect of creep and shrinkage on deformations.A parameter study was alsoconducted to discern theeffect of parameters: ballast load, water-cementratio and conditions related to drying of concrete (relative humidity and perimeter exposed to air).Acomparison withthe deformationmeasurementsof theAlvik bridge was conductedto validate the resultsfrom the model.The results showed that there was a significant difference in the calculateddeformationof the bridge during the first ten years between analyses based onnon-uniform and uniformdistribution of creepand shrinkage,respectively.The non-uniformanalysis gave largerdeformations.However, only minor differences between the two approachescould be detected in the final deformation after 120 years. The main reason for the differences in the early behaviour is primarily caused by the differences in shrinkage rate between the top and bottom flanges. In these analyses, the top flange was assumed tonotdry out from the top. Thereby, the shrinkage rate of the top flange caused by one-way drying was similar to the bottom flange that was assumed to be exposed for two-waydrying.TheB4 model gave larger deformations compared to Eurocode2.This may be due to difference in the definition ofperimeter and surface. Eurocode 2 considers the perimeter exposed to air. The B4 model instead considers the entire surface area of the part.TheB4 model and Eurocode 2 show similar results asthe measurements. However, the B4 model gaveresults more consistent with the measurements.In the parameter study,lowerrelative humidity gave smaller deformations, since concrete shrinksquicker in dry ambient air.Varying the water-cement ratiodid not affect the deformationsnoticeably.Higher ballastheight gave significantly larger deformations. The height of the ballast was an uncertainfactor due to varying heights in the structural drawings of the case study. Accurate height of ballast is therefore important. / Freivorbau broar har historiskt sett haft problem med kraftiga deformationer. Tidigare forskning föreslår att detta har orsakats av tjockleksskillnader i lådtvärsnitt och underskattning av krypning och krympning. Denna studie har undersökteffektenav ojämn krypningoch krympning på freivorbau broars långtidsdeformationer.Den ojämna krypningen och krympningen orsakas av skillnader i uttorkningshastigheterför lådtvärsnittets olika delar. En finitaelementmodell definieradesi programmet Abaqus som en fallstudie på Alviksbron.Modellen användes för att utvärdera skillnaden mellan ojämn och jämn krypning och krympning med Eurokod 2. En jämförelsemellan Eurokod 2 och Bažant’s B4 modellgenomfördes med hänsyn till ojämn krypningoch krympning.Syftet med jämförelsen var att utvärdera skillnadermellan byggnormeroch forskningmodeller med hänsyn till deformationer orsakade av ojämnkrypningoch krympning.Vidare genomfördes enparameterstudie för att urskilja effekten av parametrarna: ballast last, vatten-cement-tal och förhållanden relaterade till betongensuttorkning(relativ fuktighet och omkrets utsatt för luft).Deformationerna från finita elementmodellen jämfördes med uppmätta deformationer av Alviksbron.Resultaten visade att det fanns en signifikant skillnad i beräknad deformationunder de första tio årenmellan ojämn och jämn krypning och krympning.Ojämn krypning och krympning gav större deformationer.Mindre deformationsskillnad gavs dock i slutgiltig deformationefter 120 år. Den främsta anledningentill skillnaderna i deformation under de första tio årenär orsakat av skillnaderi krympningens hastighet mellan övre-och undre fläns.I analyserna antogs det att övre flänsen inte torkade ut från dess övre del.Därmed varkrympningens hastighetlikartad för övre flänsen som torkade ut åt ett håll, och undre flänsen som torkade ut åttvå håll.B4 modellen gav större deformationerjämfört med Eurokod 2.En möjlig förklaring för detta är definieringen av omkrets gentemot ytans area.Eurokod 2 definierar en omkrets utsatt för luft. B4 modellen definierar i stället arean av en yta, utan att ta hänsyn till om den är utsatt för luft.Även om B4 modellen och Eurokod 2 ger likartade deformationer, ger B4 modellen oftare deformationer som stämmer bättre överens med deformationsmätningarna av Alviksbron.Lägre relativ fuktighet gav mindre deformationer, eftersom betong krymper fortare i torrt klimat. Ändring av vattencementtal gav inte någon märkbar ändring i deformationer.Högre ballasthöjd gav betydligt större deformationer. Höjden på ballast var en osäker faktorpå grund av varierandehöjder i Alviksbrons konstruktionsritningar.Noggrann höjdbestämmelse av ballasten är därför viktigt.

Page generated in 0.056 seconds