• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 90
  • 77
  • 17
  • 14
  • 12
  • 11
  • 11
  • 9
  • 6
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 485
  • 159
  • 130
  • 128
  • 115
  • 82
  • 64
  • 63
  • 62
  • 60
  • 52
  • 50
  • 43
  • 43
  • 39
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The Spectral Characteristics of Fiber Grating Stabilized 980nm Pump Lasers

Lin, Hsueh-hui 28 June 2004 (has links)
The spectral characteristics of fiber grating-stabilized 980nm pump lasers were studied theoretically and experimentally. A new process of fiber tip flattening making quadrangular-pyramid-shaped fiber lens (QPSFL) was successfully developed. This fiber tip flattening process can improve the yield fabricating QPSEL up to 20% compared with the previous research of the process without tip flattening. The QPSFL was used in coupling between the high-power 980nm laser diodes and the single mode fibers (SMFs). A fiber grating was fused at the end of the single mode fiber. The reflectivity of fiber gratings were 6%, 8% and 10%, and the length of the external cavity was about 2.5m. The measured result showed that the stability of temperature to peak wavelength and driving current to peak wavelength were improved 60 and 30 times, respectively. A theoretical modeling which combined the laser rate equation and the grating theory was successfully developed as well. The qualitative analysis of the numerical simulation showed that the peak wavelength would be locked in the reflection spectrum of the fiber grating. On the other hand, we have also finished packaging a butterfly 980nm pump laser module by the laser welding technology.
32

Analysis of Regular Progressive Wave Trains on Three-Dimensional Ripple Bottom

Cheng, Chia-yan 06 February 2007 (has links)
For gravity wave trains propagating over an arbitrary wavy bottom, a perturbation expansion is developed to the third-order by employing three small perturbation parameters. Both the resonant and non-resonant cases are treated and the singular behavior at resonance is treated separately. All the theoretical results are presented in explicit forms and easy to apply. The bottom effects of different mean water depths and different degrees of undulation, as well as the steepness of incident waves, are clearly described by the theoretical results. In general non-resonant cases, the surface fluctuations deduced from undulated bottom topography decrease as the relative water depth increases and vice versa. The theory can be applied to the cases for wave trains propagating over wavy bottom topography with any arbitrary incident angles which are closer to natural phenomenon in coastal zone. Not only the well-known Bragg resonance but also the higher-order Bragg resonances are included in resonant cases. Unlike previous studies that analyze specific bottom topographies based on prescribed resonant conditions, both Bragg and higher-order Bragg resonances are revealed through the perturbation procedure step by step. For the resonant wave field, the amplification with propagating distance and time is revealed with the aid of the growth of energy flux. This theory is successfully verified by reducing to simpler situations. Also, the analytical results for the special case of two-dimensional wavy bottom are compared with experimental data for validation.
33

Intragrating sensing using chirped optical fibre Bragg gratings

Nand, Anbhawa. January 2007 (has links)
Thesis (Ph. D.)--Victoria University (Melbourne, Vic.), 2007. / Includes bibliographical references.
34

Optomechanical behavior of embedded fiber Bragg grating strain sensors /

Mastro, Stephen A. El-Sherif, Mahmoud Abd-El-Rahman, January 2005 (has links)
Thesis (Ph. D.)--Drexel University, 2005. / Includes abstract and vita. Includes bibliographical references (leaves 127-132).
35

Fiber Bragg grating-tunable diode laser /

Ericksen, Doug. January 1900 (has links)
Thesis (M.S.)--Oregon State University, 2006. / Printout. Includes bibliographical references (leaves 50-54). Also available on the World Wide Web.
36

Microscopic characterisation of fibre Bragg gratings

Kouskousis, Betty. January 2009 (has links)
Thesis (Ph.D.)--Victoria University (Melbourne, Vic.), 2009.
37

An investigation into performance criteria for Fibre Bragg Grating sensors embedded in composite structures

Roberson, Craig Valentine 17 September 2014 (has links)
M.Ing. (Mechanical Engineering) / The dissertation explores the applications and limitations of optic Fibre Bragg Grating (FBG) sensors for the purpose of structural health monitoring of high performance composite aerospace structures. The absence of a set of stringent performance criteria governing the form and function of a sensory system for embedded high performance applications highlights the major hurdle to be overcome before widespread acceptance of these technologies becomes apparent. The dissertation therefore develops through an extensive literature study a basic framework of performance criteria to be met by the sensory system upon which a prototype Structural Health Monitoring (SHM) system can be further developed. The resolution of the performance criteria into categories of mechanical and non-mechanical performance allows independent evaluation of factors that directly affect the performance of the sensor (in terms of strength, embeddability and load carrying ability) as well as its functional performance (in terms of orientation, spatial resolution and measurement philosophy). The literature study uses the non-mechanical performance limitations as a guideline for the selection of Fibre Bragg Grating (FBG) sensors as the sensory mechanism. The mechanical performance limitations of these specific sensors are then called into question and evaluated. Independent experiment campaigns are therefore developed to evaluate the mechanical and non-mechanical performance limitations such that a set of performance criteria can be developed governing the use of embedded sensory systems. Non mechanical performance with particular emphasis on sensor placement and orientation is investigated by simulating a fixed-free Euler Bernoulli cantilever using the Finite Element Method (FEM). The ability of the sensor to identify structural changes by measuring changes in modal response shows good results. Furthermore the inability of modal based monitoring to identify structural changes in the vicinity of modal inflection points is identified as an opportunity to locate structural deficiencies by monitoring multiple modes with known inflection point positions. The method also provides recommendations of sensor placement and orientation (close to the beam fixture and parallel with the neutral axis) such that the effectiveness of strain component measurements from all measurable modes is maximised. Mechanical performance of embedded FBG sensors is evaluated through an extensive fracture testing program which measures the fracture strains of fibre samples subjected to two-point bending. The fracture test program allows the quantification of the effects of the presence of the fibre’s protective polymer coating on fibre embeddability in composites, the consequent effects that the removal of this coating has on the mechanical performance and fracture behaviour of FBG sensors. These effects are qualified and mitigatory measures developed to improve the mechanical performance. A system of crack masking, hydrofluoric acid etching and fibre treatment is developed and statistical data analysis methods are employed and refined such that improvements in the mechanical properties of the FBG sensors can be quantified. An evaluation of the effectiveness of the proposed mechanical performance improvements yields good results culminating in the development of a comprehensive set of mechanical performance criteria to facilitate further development of a reliable SHM system.
38

Modélisation et réalisation de fibres à bandes interdites photoniques pour la génération et le transport des faisceaux laser puissants / Design and realization of photonic bandgap fibers for high power beam generation and delivery

Baz, Assaad 11 December 2013 (has links)
Ces travaux concernent la modélisation et la réalisation de fibres optiques micro-structurées, et plus particulièrement de fibres à bandes interdites photoniques actives et passives, à grande aire effective et destinées au transport ou à la génération de faisceaux lasers puissants.Une première partie du travail a porté sur l’étude d’une nouvelle géométrie de fibre micro-structurée - baptisée « fibre de Bragg pixélisée » - étudiée pour l’obtention d’un large cœur, monomode en pratique. Pour cette géométrie la fibre est rendue monomode en ajustant de façon optimale les distances entre les anneaux de haut indice de réfraction (condition dite demi-onde). Une première réalisation a permis de démontrer un diamètre de mode de 26μm à la longueur d'onde 1400nm dans une fibre passive. Un second aspect de ce travail a consisté en des études théoriques et expérimentales menées sur des fibres à bandes interdites photoniques présentant une gaine hétéro-structurée. Dans ces structures, la gaine comporte des résonateurs conçus pour éliminer les modes d’ordre supérieur par filtrage par les pertes. Des diamètres de mode allant de 19μm à 65μm ont ainsi été obtenus en régime monomode à 1050nm dans plusieurs fibres passives utilisées dans des bandes interdites photoniques différentes. Une fibre hétéro-structurée active a également été réalisée: le cœur, en silice pure dopée avec des ions ytterbium, a été obtenu via le procédé Sol-Gel. La fibre issue de cette réalisation a permis l’observation d’un effet laser avec une efficacité de 62.5%, pour un mode présentant un diamètre de 36μm. / These works concern the design and realization of micro-structured optical fibers, in particular, large mode area, active and passive, photonic bandgap fibers for high power laser beams generation and delivery. The first part of the work focused on the study of a new geometry of micro-structured fiber - so called "pixilated Bragg fiber" - in order to obtain a large, practically singlemode, core. For that geometry, the fiber is made singlemoded by optimizing the distances between the high index rings (Half wave stack condition). A first realization allowed to report a mode field diameter of 26μm measured at 1400nm wavelength in a passive fiber. The second aspect of this work included theoretical and experimental studies, of photonic bandgap fibers having a hetero-structured cladding. Specially designed resonators are added to the cladding of these fibers in order to eliminate higher order modes. Thus, 19μm to 65μm mode field diameters have been obtained in a singlemode regime at 1050nm wavelength for several passive fibers used in different bandgaps. An active fiber with hetero-structured cladding was also presented: the core was made of pure silica, ytterbium doped, synthesized using the Sol-Gel technique. The realized fiber allowed the observation of a laser emission with an efficiency of 62.5% and a mode field diameter of 36μm.
39

Versatile interferometer system for inscription of fiber Bragg gratings

Du Toit, Ruan W. 06 June 2012 (has links)
M.Ing. / Bragg gratings are important components for sensing and for wavelength-division multiplexed optical communication systems. These gratings are manufactured by either side-writing of the fiber with a high intensity UV light through a phase mask, or by exposing the fiber to interference fringes through an interferometer arrangement. With one phase mask, only a small range of grating wavelengths is possible. This is achieved by pre-straining the fiber during the writing process. The limitation arises from the break strength of the fi ber, allowing a maximum range of Bragg wavelengths of only approximately 10 nm. The interferometric technique uses a beam splitter to divide a single input UV beam into two and intersecting them at the fiber. The angle at which the beams intersect will determine the period of the interference fringes and thus the Bragg grating written in the optical fiber. The Argon-ion laser is used with a 1060 nm phase mask (used to split beam) to write Bragg gratings with reflections from 1012 to 1600 nm. Three accurate- translation and rotation stages are used to keep the fiber at the beam intersection. Alignment, mechanical stability and coherence of laser are critical.
40

Manufacturing of fibre bragg gratings for dispersion compensation

De Bruyn, Louis 30 November 2011 (has links)
M.Ing. / Fibre Bragg gratings (FBGs) have been manufactured for the first time in South Africa by means of the phase mask method. It is possible to manufacture not only uniform FBGs, but also chirped FBGs. The optical fibre that is used for imprinting the FBGs can also be hydrogen loaded locally. FBGs with a reflectivity of 99.7% and higher can be written by making use of the experimental setup presented in this thesis. It is possible to manufacture a FBG with a centre wavelength that has any value between the Bragg wavelength and approximately 6 nm lower than the Bragg wavelength. This is done by stretching the optical fibre prior to the writing process. FBGs have been simulated in MATLAB to get an idea of what one may expect during the manufacturing process. The program makes it possible to simulate the effects of changes in grating length, index modulation, pressure, temperature and strain on the centre wavelength of an FBG. Dispersion is explained in detail. Chromatic dispersion, which is part of dispersion as a whole, can be cancelled by making use of an FBG. The different techniques for the measurement of chromatic dispersion is explained. Some insight is given on dispersion (the pulse broadening in the time domain due to the different velocities of different wavelengths from the source's finite optical bandwidth) compensation. An FBG that was manufactured locally has been tested as a dispersion compensator. It was found that an FBG is effective in performing this function.

Page generated in 0.0441 seconds