1 |
Free Spectral Range Matched Interrogation Technique for Wavelength Demodulation of Fiber Bragg Grating SensorsRahimi, Somayyeh 20 January 2009 (has links)
Free Spectral Range Matched Interrogation (FSRMI) technique for wavelength demodulation of fiber Bragg grating sensors.
We designed and tested a new wavelength demodulation system based on free-spectral-range-matched interrogation which employs a tunable fiber Fabry-Perot interferometer (FPI) and a multi-channel bandpass filter. This technique was deployed to test fiber Bragg gratings (FBG), long period gratings (LPG) and tilted fiber Bragg gratings (TFBG).
In the experimental setup, a broadband source launches light into a fiber Bragg grating under test and the reflection/transmission spectrum is fed into a tunable FPI. By tuning an external bias applied to the FPI, the transmission spectrum of FPI scans over a wavelength range. The input optical signal is therefore selectively passed through the FPI and then fed into a four-channel bandpass filter followed by four photodetectors. The optical signal is converted to electrical signal by the photodiodes and is acquired by a data acquisition system. Since a bandpass filter with four channels are used in this interrogation system it can scan four distinguished wavelength ranges simultaneously and thus the scan rate is four time faster.
We used this setup for doing some temperature and strain sensitivity measurements on some fiber gratings. Strain sensitivity measurements were done on FBG, TFBG and LPG and temperature sensitivity measurements were performed on TFBG. The strain and temperature sensitivity coefficients of these fiber Bragg grating sensors were obtained from experimental data. Our results show the potential of the integration of the FSRMI system with fiber Bragg gratings for temperature and strain multiple-sensor arrays with high sampling speed and high accuracy.
|
2 |
Free Spectral Range Matched Interrogation Technique for Wavelength Demodulation of Fiber Bragg Grating SensorsRahimi, Somayyeh 20 January 2009 (has links)
Free Spectral Range Matched Interrogation (FSRMI) technique for wavelength demodulation of fiber Bragg grating sensors.
We designed and tested a new wavelength demodulation system based on free-spectral-range-matched interrogation which employs a tunable fiber Fabry-Perot interferometer (FPI) and a multi-channel bandpass filter. This technique was deployed to test fiber Bragg gratings (FBG), long period gratings (LPG) and tilted fiber Bragg gratings (TFBG).
In the experimental setup, a broadband source launches light into a fiber Bragg grating under test and the reflection/transmission spectrum is fed into a tunable FPI. By tuning an external bias applied to the FPI, the transmission spectrum of FPI scans over a wavelength range. The input optical signal is therefore selectively passed through the FPI and then fed into a four-channel bandpass filter followed by four photodetectors. The optical signal is converted to electrical signal by the photodiodes and is acquired by a data acquisition system. Since a bandpass filter with four channels are used in this interrogation system it can scan four distinguished wavelength ranges simultaneously and thus the scan rate is four time faster.
We used this setup for doing some temperature and strain sensitivity measurements on some fiber gratings. Strain sensitivity measurements were done on FBG, TFBG and LPG and temperature sensitivity measurements were performed on TFBG. The strain and temperature sensitivity coefficients of these fiber Bragg grating sensors were obtained from experimental data. Our results show the potential of the integration of the FSRMI system with fiber Bragg gratings for temperature and strain multiple-sensor arrays with high sampling speed and high accuracy.
|
3 |
The application of optical fibre Bragg grating sensors to an internal wind tunnel balancePieterse, Frederik Francois 04 June 2012 (has links)
D. Phil. / Conventional internal wind tunnel balances are designed and constructed to accommodate foil strain gauges which measure the deformation (strain) of the material. Foil strain gauge balances are known to be affected by electromagnetic interference and temperature. These balances are expensive and their manufacture is time consuming. With an increasing demand for higher accuracy, stiffness, increased resolution and temperature compensation, current balance designs are becoming inadequate. To overcome identified balance deficiencies a research programme in the application of optical Bragg gratings to wind tunnel balances was initiated. In this programme a new concept of using optical fibre Bragg grating sensors, with the advantage of using mechanical amplification to increase sensitivity, and the implementation of temperature compensation techniques was demonstrated on a simulated two component balance.
|
4 |
Nonlinear System Identification of Physical Parameters for Damage Prognosis and Localization in StructuresBordonaro, Giancarlo Giuseppe 04 January 2010 (has links)
The understanding of how structural components endure loads, in particular variable loads, is that these components gradually, over some period of time depending on the nature of the loading and the material, develop a microcrack. After some additional time and loading, the microcrack grows to a size that might be detected. Beyond that point, the microcrack propagates in a manner that can be reliably predicted by computer analysis codes. Consequently, one can define different stages for the life of a structural component. These are: 1) the period prior to the formation of a microcrack, 2) the period of microcrack growth, and finally 3) the period of crack growth. To date, structural health monitoring approaches that seek to detect cracks offer no insight into the extent of deterioration occurring in the initial stage that is a precursor to the formation of the microcrack or its growth. However, an approach that would facilitate monitoring the extent of the deterioration that takes place during this stage promises to improve life prediction capabilities of structural components.
The challenge, thus, is to develop quantitative assessment of damage accumulation from the earliest stages of the fatigue process and to provide a structure's signature that is dependent of the damage stage. One such signature is the structure's response to forced excitation. The realization of such a goal would help in advancing structural health monitoring procedures using interrogative system identification techniques and determine sensitivities of physical parameters to damage. Additionally, vibration-based spectral quantities are related to physical properties of the structure under test.
In this thesis, nonlinear response to parametric excitation is exploited for nonlinear system identification of metallic and composite beam-mass systems before damage initiation through intermediate states of damage progression to failure. Parametric identification procedure combines linear and higher order spectral analysis of vibration measurements and perturbation techniques for the derivation of the approximate solution of the system nonlinear governing differential equation. The possibility of using optical Fiber Bragg Grating sensors technology for damage localization is also assessed. Spectral moments and quantities obtained from fiber optic strain measurements are evaluated near and away from cracks to assess the relation between these moments and cracks.
Variations in parameters representing natural frequency, damping and effective nonlinearities for different levels of progressive damage in a beam-mass system have been determined. Their percentage variations have been quantified to establish their sensitivities to damage initiation. The results show that damping and effective nonlinearity parameters are more sensitive to damage conditions than the natural frequency of the first mode. Crack localization is assessed by means of optical fiber technology for a composite beam-mass system. The results show that noise levels in fiber optic signals are high in comparison to strain gage signals. Of particular interest, however, is the observation that the nonlinear response is more pronounced near the cracks than away from them. / Ph. D.
|
5 |
Experimental Analysis of Disc Thickness Variation Development in Motor Vehicle BrakesRodriguez, Alexander John, alex73@bigpond.net.au January 2006 (has links)
Over the past decade vehicle judder caused by Disc Thickness Variation (DTV) has become of major concern to automobile manufacturers worldwide. Judder is usually perceived by the driver as minor to severe vibrations transferred through the chassis during braking [1-9]. In this research, DTV is investigated via the use of a Smart Brake Pad (SBP). The SBP is a tool that will enable engineers to better understand the processes which occur in the harsh and confined environment that exists between the brake pad and disc whilst braking. It is also a tool that will enable engineers to better understand the causes of DTV and stick-slip the initiators of low and high frequency vibration in motor vehicle brakes. Furthermore, the technology can equally be used to solve many other still remaining mysteries in automotive, aerospace, rail or anywhere where two surfaces may come in contact. The SBP consists of sensors embedded into an automotive brake pad enabling it to measure pressure between the brake pad and disc whilst braking. The two sensor technologies investigated were Thick Film (TF) and Fibre Optic (FO) technologies. Each type was tested individually using a Material Testing System (MTS) at room and elevated temperatures. The chosen SBP was then successfully tested in simulated driving conditions. A preliminary mathematical model was developed and tested for the TF sensor and a novel Finite Element Analysis (FEA) model for the FO sensor. A new method called the Total Expected Error (TEE) method was also developed to simplify the sensor specification process to ensure consistent comparisons are made between sensors. Most importantly, our achievement will lead to improved comfort levels for the motorist.
|
6 |
Fiber Bragg Grating Sensors : An Exploration Of Applications In Diverse FieldsGuru Prasad, A S 12 1900 (has links) (PDF)
Sensors have become essential elements in human life for safe and comfortable existence in the ever demanding world. Various technologies over decades have contributed in their own way fulfilling innumerable sensing requirements. The discovery of optical sensor technologies has revolutionized the sensing field due to their inherent advantages. Among the large number of fiber optic sensor technologies, FBG based sensors have become widely known and popular within and outside the photonics community and has seen a prominent rise in their utilization.
This thesis explores the use of FBG sensors for a wide range of applications scanning across a variety of engineering and medical applications, in the areas of civil engineering, biomechanical engineering, aerospace engineering, geoengineering, etc. It also deals with newer methods of packaging FBG sensors for the measurement of specific engineering parameters like strain, temperature, pressure, displacement and vibration.
In the field of civil engineering, FBG sensors are employed for strain sensing on a prism and furthermore tested on a full size brick wallet. During this study, emphasis is made on substituting traditional sensors by specially packaged FBG sensors with the intent of either enhancing the sensing system’s performance or in merging/uniting the inherent advantages of FBG sensors.
In the area of biomechanics, a novel sensor methodology using FBG sensors, for measuring surface strains generated on the skin of the calf muscle during various leg exercises is proposed. This methodology is used to address one of the most critical and life threatening issues in long distance air travel, namely the Deep Vein Thrombosis. Further, a FBG sensor based plantar sensing plate, is designed and developed, to measure plantar strain distribution in foot and also to analyze the postural stability.
In the field of aerospace engineering, FBG sensors are used for addressing two of the most vital issues; Structural Health Monitoring (SHM) and direct measurement of pressure and temperature on the surface of an aircraft under hypersonic wind flow. Carbon Fiber Composite coupon level testing is carried out to obtain a generic strain calibration factor for the FBG sensor. Further, FBG sensors are exploited for the direct measurement of absolute temperature and pressure on the leeward surface of blunt cone at hypersonic wind speeds.
In the domain of geoengineering, the feasibility studies have been undertaken to use a FBG as a seismic sensor and as a bore-well characterizing sensor. A novel FBG seismic sensor package is developed using a single FBG sensor to pick up the seismic waves propagating through the ground generated from earthquakes and ground tremors. Further, FBG sensors are used for measurement of temperature profiles in a bore-well to delineate and characterize the behavior of fractures during seasonal climatic changes. To summarize, the present thesis demonstrates a comprehensive experimental study which bring out the utility of FBG sensors in a variety of challenging applications.
|
7 |
[en] DETECTION AND CHARACTERIZATION OF STRUCTURAL DAMAGE USING FIBER BRAGG GRATING SENSORS AND ARTIFICIAL NEURAL NETWORKS / [pt] DETECÇÃO E CARACTERIZAÇÃO DE DANOS ESTRUTURAIS ATRAVÉS DE SENSORES A REDE DE BRAGG E REDES NEURAIS ARTIFICIAISDANIEL RAMOS LOUZADA 26 February 2019 (has links)
[pt] O aumento dos custos relacionados aos processos de manutenção em estruturas como aeronaves, aliadas à crescente demanda das mesmas, alimentam a necessidade de investimentos em técnicas inovadoras de monitoramento estrutural. Dessa forma, o trabalho realizado nesta tese, busca o desenvolvimento de uma técnica de monitoramento ativo, visando o acompanhamento de parâmetros da estrutura analisada, a fim de identificar e caracterizar processos de dano não visíveis, tais como corrosão e delaminação. A metodologia empregada, teve como base a análise dos padrões de deformação superficial, obtidos com o uso de grades de sensores à fibra óptica baseadas em redes de Bragg (FBG). Inicialmente, tais padrões foram provocados por carregamentos estáticos (tração), e posteriormente por atuadores PTZ fixados à estrutura. Estes últimos são submetidos a uma voltagem alternada e frequência fixa. Esta técnica apresenta todas as vantagens dos sensores FBG (massa e dimensões reduzidas, imunidade eletromagnética, elevado poder de multiplexação e alta sensibilidade entre outras), alem de permitir a visualização de alterações nos padrões de deformação, provocados por danos, através da variação da
frequência de excitação. Com relação à interpretação dos resultados, a estratégia empregada consistiu em separar o problema de detecção e caracterização dos danos. Dessa forma, a detecção é realizada comparando a energia das deformações superficiais dos corpos de prova nos casos com e sem defeito, enquanto a caracterização é obtida através a utilização de redes neurais artificiais (RNA), por meio de rotinas de reconhecimento de padrões. / [en] The higher costs related to maintenance processes in structures such as aircraft, coupled with the growing demand of them, fueling the need for investment in innovative techniques for structural monitoring. Thus, the work done in this thesis seeks to develop a technique of active monitoring, aiming at monitoring of structure parameters analyzed in order to identify and characterize processes of hidden damage such as corrosion and delamination. The maid methodology was based on the analysis of patterns of surface deformation, obtained with the use of nets of optical fiber sensors based on fiber Bragg gratings ( FBG ). Initially, these patterns were caused by static loads (tension ), and later by PTZ actuators fixed to the frame, who are subjected to an AC voltage and fixed frequency. This technique has all the advantages of the FBG s sensors (mass and small dimensions, electromagnetic immunity, high multiplexing s power and high sensitivity among others), in addition to allowing visualization of changes in the patterns of deformation caused by damage, by varying the frequency excitation. With respect to the interpretation of the results, the strategy employed was to separate the problem of detection and characterization of damage. Thus, the detection is performed by comparing the deformation energy of the surface of the specimens in the cases with and without defect, whereas the characterization is obtained through the use of artificial neural networks (ANN) by means of pattern recognition routines.
|
8 |
Germanosilicate Fibers And Bragg Gratings : Newer Efforts In Understanding Photosensitivity And Novel Methods For Strain-Temperature DiscriminationRahman, Aashia 07 1900 (has links)
The different topics covered in this thesis include photosensitivity in germanosilicate fibers/glasses and application of fiber Bragg grating sensors in simultaneous strain and temperature discrimination.
Fiber Bragg Gratings are wavelength dispersive refractive index structures manufactured through ultra-violet (UV) exposure of optical fibers. Their applications range from wavelength division multiplexing filters, dispersion compensators and fiber laser resonators for telecommunication applications to different types of point or distributive sensors for a variety of applications.
One aim of this thesis has been to understand the mechanism of photosensitivity in germanosilicate fibers/preforms. Studies undertaken in this part of the thesis include thermal dynamics of Fiber Bragg Gratings and nano-indentation on ultra-violet irradiated germanosilicate glass preforms.
An interesting, periodic appearance of a new peak has been observed in the reflected spectrum of Bragg grating inscribed in a germanosilicate fiber during thermal treatment. The new peak occurs on the longer wavelength side of the spectrum during heating and on the shorter wavelength side during cooling, following an identical reverse dynamics. A commercial grating with 99.9% reflectivity also shows a similar decay dynamics. The observed temperature induced distortion in refractive index modulation profile has been understood in the light of compaction-densification model. It is proposed that during the fabrication process of a grating, the modulation in the thermal expansion coefficient brought about by the interference fringes results in a non-uniform expansion throughout the grating length which in turn results in the distortion of the refractive index profile with increase/decrease in temperature. Since the reflection spectrum of a grating can be approximated as the Fourier transform of the refractive index profile, any distortion in the index profile results in the observed anomalous behaviour in the reflection spectrum.
Nano-indentation studies have been performed to measure the changes in mechanical properties of a glass preform subjected to different levels of ultra-violet exposure. The results reveal that short term exposure leads to an appreciable increase in the Young’s modulus suggesting the densification of the glass, confirming the compaction-densification model. However, on prolonged exposure, the Young’s modulus decreases, which provides the first direct evidence of dilation in the glass leading into the Type IIA regime. The present results rule out the hypothesis that continued exposure leads to an irreversible compaction and prove that index modulation regimes are intrinsic to the glass matrix.
In the second part of the thesis, three different schemes have been proposed for the use of Fiber Bragg Gratings as strain-temperature discriminating sensors:
(a) The first method is based on the measurement of the different characteristic wavelength shifts of two types of gratings. Strain and temperature sensitivities of a Type I Bragg grating (G1) in germania doped silica fiber, fabricated under normal conditions, and zero strain, are compared with that of a Bragg grating inscribed under pre-strained condition (G2). Experimental results show that both, strain and temperature sensitivities of G1 and that of G2 are different. Based on this study, we have proposed an approach which enables simultaneous discrimination of axial strain and temperature.
(b) In the second method, a single sensing element has been used to encode strain and temperature into an additional parameter other than the wavelength shift. The thermal out-diffusion of germanium from the core of a photosensitive fiber under elevated temperature is exploited to form a Fabry-Perot filter with a single Fiber Bragg Grating. The filter is fabricated using the standard phase-mask technique and one-time exposure. Energy Dispersive X-Ray analysis is used to measure the out-diffusion. The filter is used as a sensor for simultaneous measurement and discrimination of strain and temperature. The proposed technique, where a single grating is used to discriminate the parameters, provides a large advantage over other existing methods.
(c) In the third method, a compact design based on cross-wire arrangement of Fiber Bragg Gratings having identical Bragg resonance and different reflectivity is proposed for simultaneously sensing strain (uniaxial) and temperature. Two gratings are assembled orthogonal to each other on an aluminium base. The cross-wire design allows the two sensors to experience the same temperature but different strain. The gratings are identified by their respective reflectivity and, strain and temperature are resolved from the shift in Bragg wavelength. The proposed design exploits the fact that strain is a vector and temperature is a scalar parameter. This sensor has wide industrial application in discriminating strain from temperature effects.
|
9 |
Substrate Independent Non-covalent Based Surface Functionalization Using Poyelectrolyte Multilayers for Bio-applicationsPrashanth, G R January 2013 (has links) (PDF)
The electrostatic layer-by-layer (LbL) self-assembly of polyelectrolyte’s has shown applications in thin film coatings, micro patterning, nano-bioreactors and capsules for drug delivery. The film architecture can be precisely designed and controlled to nanometer scale precision with a range from 5 nm to a few microns. Both in vitro and in vivo studies indicate potential applications in biology, pharmaceutics, medicine, and other biomedical areas. This thesis work focused on the design and development of protocols to fabricate polyelectrolyte multi-layer patterns on a variety of substrates such as glass, metals and plastics such as acrylic and polycarbonate. The micro-scale polyelectrolyte patterns have applications in the creation of DNA, protein or cell based microarrays. This work also demonstrated the use of polyelectrolyte multi-layers in the enhancement of fluorescence signals from fluorophore-tagged molecules captured within the multi-layers. In-situ measurements using Fiber Bragg Gratings were carried out to study the kinetics of adsorption and desorption of polyelectrolytes participating in the layer buildup process under different process environmental conditions.
|
10 |
[en] INTERROGATION SYSTEM FOR MULTIPLE BRAGG GRATING SENSORS USING TIME DOMAIN REFLECTOMETRY AND FIXED FILTERS / [pt] SISTEMA DE INTERROGAÇÃO DE MÚLTIPLOS SENSORES A REDE DE BRAGG UTILIZANDO REFLECTOMETRIA NO DOMÍNIO DO TEMPO E FILTROS FIXOSCARLA CARVALHO KATO 28 February 2005 (has links)
[pt] Este trabalho apresenta um sistema de interrogação de
sensores a rede de Bragg em fibras ópticas, baseado em
reflectometria no domínio do tempo e filtros fixos a rede
de Bragg. Utilizando uma fonte de luz pulsada, a posição
espectral do sensor é relacionada à razão da intensidade
dos pulsos, tornando a detecção independente de variações
de intensidade. São abordados aspectos teóricos e
experimentais referentes aos princípios de funcionamento
desta técnica. Uma vez que a filtragem é feita com redes de
Bragg, apenas um circuito de fotodetecção é utilizado e um
número reduzido de acopladores/circuladores ópticos é
necessário, o sistema possibilita reduzir consideravelmente
o custo para a interrogação de um conjunto de sensores. A
utilização de apenas um circuito de fotodetecção apresenta
a vantagem de manter as mesmas características para todos
os pulsos, minimizando influências externas neste circuito
como, por exemplo, variações da temperatura ambiente. Foi
montada uma bancada de testes para a interrogação de seis
sensores. Comparações entre os resultados experimentais e
simulados mostram boa concordância. Extrapolações indicam
que seria possível interrogar sensores com uma variação
espectral de 2 nanômetros, com incertezas menores que 10
picometros, o que é adequado para sensores de temperatura.
Análises de interferência entre dois canais adjacentes
mostram pouca influência entre eles e são apresentadas
opções para diminuir essa interferência. / [en] This work presents a system for the interrogation of fiber-
optic Bragg grating sensors based on time domain
reflectometry and Bragg grating fixed filters. Using a
pulsed light source, the spectral position of the sensor is
related to the ratio of two pulses intensities, making
detection independent of intensity variations. Theoretical
and experimental aspects regarding the working principles
of this technique are discussed. Since filtering is
accomplished with Bragg grating so that only one
photodetection circuit is used and a reduced number of
optic couplers/circulators are needed, the system provides a
considerable reduction in the cost of interrogation for a
set of sensors. Using only one photodetection circuit also
has the advantage of maintaining the same characteristics
for all pulses, thus minimizing external influences in this
circuit, such as variations in the environment temperature.
A test stand was assembled for the interrogation of six
sensors. Comparisons between experimental and simulated
results show a good agreement. Extrapolations indicate that
it would be possible to interrogate sensors with a spectral
variation of 2 nanometers, with uncertainties lower than 10
pm, which is adequate for temperature sensors. Cross talk
analyses between two adjacent channels show small influence
between them, and approaches to reduce this interference
are presented.
|
Page generated in 0.0968 seconds