1 |
Leptin and inflammation in the brain characterization of cellular targets /Lafrance, Véronique. January 1900 (has links)
Thesis (M.Sc.). / Written for the Dept. of Neurology and Neurosurgery. Title from title page of PDF (viewed 2008/12/07). Includes bibliographical references.
|
2 |
Molecular mechanisms of radiation-induced brain injuryLee, Won Hee 01 December 2010 (has links)
Radiation therapy has been most commonly used modality in the treatment of brain tumors. About 200,000 patients with brain tumors are treated with either partial large field or whole brain irradiation every year in the United States. The use of radiation therapy for treatment of brain tumor, however, can subsequently lead to devastating functional deficits several months to years after treatment. Unfortunately, there are no known successful treatments and effective strategies for mitigating radiation-induced brain injury. In addition, the specific mechanisms by which irradiation causes brain injury in normal tissues are not fully understood. A deeper understanding of the molecular mechanisms underlying these phenomena could enable the development of more effective therapies to contribute to long-term disease suppression or even cure. Therefore,the primary goal of this research project was to determine the molecular mechanisms responsible for radiation-induced brain injury in normal tissues.
In the first study, the effects of whole brain irradiation on pro-inflammatory pathways in the brain were examined. Results demonstrated that brain irradiation induces regionally specific alterations in pro-inflammatory environments through activation of pro-inflammatory transcription factors (e.g., activator protein-1 (AP-1),nuclear factor-κB (NF-κB), and cAMP response element-binding protein (CREB)) and overexpression of pro-inflammatory mediators (e.g., tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1)) in brain. This study provides evidence for a differential induction of pro-inflammatory mediators in specific brain regions that have importance for the neurological/neuropathological consequences of irradiation.
In the second study, a mathematical model describing radiation-induced mRNA and protein expression kinetics of TNF-α in hippocampus was reconstructed. This study demonstrated that the reaction kinetic model could predict protein expression levels of TNF-α in cortex, suggesting that this model could be used to predict protein expression levels of pro-inflammatory mediators in other parts of the brain.
In the third study, the effects of aging on radiation-mediated impairment of immune responses in brain were examined. Results showed that radiation-induced acute inflammatory responses, such as overexpression of pro-inflammatory cytokines (e.g., TNF-α, IL-1β, and IL-6),adhesion molecules (e.g., intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin), chemokine MCP-1, and matrix metalloproteinase-9 (MMP-9), are significantly impaired in aged brain. This study suggests that reduced production of pro-inflammatory mediators in response to irradiation compromises the normal host defense mechanisms in damaged brain tissue and subsequently leads to impaired repair/remodeling responses in old individuals.
In the fourth study, the effects of irradiation on MMPs/tissue inhibitor of metalloproteinases (TIMPs) and extracellular matrix (ECM) degradation in brain were examined. Results demonstrated that whole brain irradiation induces an imbalance between MMPs and TIMPs expression, increases gelatinase activity, and degrades collagen type IV in the brain. This study suggests that a radiation-induced imbalance between MMP-2 and TIMP-2 expression may have an important role in the pathogenesis of brain injury by degrading ECM components of the blood-brain barrier (BBB) basement membrane.
In the fifth study, the effects of irradiation on angiogenic factors and vessel rarefaction in brain were examined. Results demonstrated that whole brain irradiation decreases endothelial cell (EC) proliferation, increases EC apoptosis, and differentially regulates the expression of angiogenic factors such as angiopoietin-1 (Ang-1), Ang-2, Tie-2, and vascular endothelial growth factor (VEGF) in brain. This study suggests that radiation-induced differential regulation of angiogenic factors may be responsible for vessel rarefaction.
In summary, the results from these studies demonstrated that whole brain irradiation induces brain injury by triggering pro-inflammatory pathways, degrading extracellular matrix, and altering physiologic angiogenesis. Therefore, this work may be beneficial in defining a new cellular and molecular basis responsible for radiation-induced brain injury. Furthermore, it may provide new opportunities for prevention and treatment of brain tumor patients who are undergoing radiotherapy. / Ph. D.
|
3 |
Evaluation of TiO2 exposure impact on adult and vulnerable brains / Evaluation des Effets de l'Exposition au TiO2 sur le Cerveau Adulte et VulnérableDisdier, Clémence 11 April 2016 (has links)
La présence croissante de nanoparticules (NPs) dans les produits de la vie quotidienne (alimentation, médicaments, cosmétiques, textiles…) soulève de sérieuses inquiétudes quant à leurs potentiels effets nocifs pour la santé humaine. Les NPs de dioxyde de titane (TiO2) sont produites à l’échelle industrielle et peuvent déjà être trouvées dans plusieurs produits commerciaux tels que les peintures, les cosmétiques ou dans les systèmes de décontamination de l’eau ou de l’air. Dans le passé, les NPs de TiO2 étaient considérées comme inertes, mais, très récemment, l'Agence Internationale pour la Recherche sur le Cancer les a classées comme possiblement cancérogènes (groupe 2B) pour l’homme. De nombreuses études in vitro et in vivo ont démontré la potentielle neuro-toxicité des NPs de TiO2, mais très peu d'études se sont concentrées plus spécifiquement sur la barrière hémato-encéphalique (BHE), protégeant le cerveau. Aujourd'hui, en dépit des avancées constatées, la bio-cinétique et la bio-accumulation des NPs de TiO2 ainsi que les conséquences sur la physiologie de la barrière hémato-encéphalique (BHE) in vivo restent très peu documentées. De plus, dans l’évaluation du risque lié à l’exposition aux NPs, des facteurs de risque tel que l’âge ont jusqu’ici été quasiment ignorés. Dans ce contexte, l’objectif de ce projet est donc d’évaluer chez le rat adulte et âgé, l’impact d’une exposition aux NPs de TiO2 sur les fonctions de la BHE et sur le métabolisme cérébral. Nos résultats ont montré que les NPs de TiO2 s’accumulent dans certains organes et tissus (principalement dans les poumons, la rate et le foie) et ne sont pas distribuées au système nerveux central (SNC) que ce soit après injection intra-veineuse (IV) ou après une inhalation subaiguë à un nano-aérosol de TiO2. Après administration IV, une interaction directe entre NPs et les cellules endothéliales microvasculaires conduit à des altérations fonctionnelles au niveau de la BHE. Malgré l'absence de translocation vers le SNC, la bio-persistance du titane dans les organes périphériques semble être la cause de modulations de perméabilité de la BHE et d’une inflammation cérébrale. L'implication de médiateurs circulants faisant le lien entre la bio-persitance de titane dans les organes périphériques et les modulations observées au niveau cérébral a été démontré en utilisant un modèle in vitro de BHE. Une réponse exacerbée en termes de neuro-inflammation et de modulation de perméabilité de la BHE établit la vulnérabilité du cerveau âgé à la toxicité des NPs inhalées. Ces résultats ont démontré que malgré l'absence de translocation cérébrale, l'exposition aux NPs de TiO2 induit des altérations fonctionnelles de la BHE et une neuro-inflammation qui pourraient conduire à des troubles neurologiques. L’identification des médiateurs et la description des effets neurotoxiques restent encore à préciser. / The overwhelming presence of nanoparticles (NPs) in products including foods, medications, cosmetics, or textiles raises serious concerns about their potential harmful effects on human health. In the wide diversity of NPs, titanium dioxide (TiO2) NPs are among those produced on a large industrial scale and can already be found in several commercial products such as paints, cosmetics or in environmental decontamination systems. In the past, TiO2 NPs was considered inert, but, very recently, the International Agency for Research in Cancer (IARC) has classified TiO2 as possibly carcinogenic (group 2B) to human beings. Numerous in vitro and in vivo studies have shown the potential neuro-toxicity of TiO2 NPs, but very few studies focus on the central nervous system (CNS), Nowadays, notwithstanding the reported advances, the biokinetic and bioaccumulation ofTiO2 NPs and the consequences on the physiology of the blood-brain barrier (BBB) in vivo are unknown. In addition, NPs effect on susceptible population such as the elderly have been mostly ignored. In this context, the target of the present studies is to evaluate the in vivo impact of exposure to NPs on the BBB physiology and brain inflammation which could promote neurotoxicity in young adults and aging. Our results have shown that TiO2 NPs bioaccumulate in organs and tissues (lungs, spleen and liver especially) and don’t translocate to the brain either after IV or subacute inhalation exposure. In IV administration case, the direct interaction between NPs and brain endothelial cells induces BBB functional alterations. Despite the lack of CNS translocation, the biopersistence of titanium in peripheral organs may be indirectly the cause of BBB permeability alteration and brain inflammation. The involvement of circulating mediators linking titanium biopersitence in peripheral organs and brain impact has been demonstrated using an in vitro BBB model. An exacerbated response in term of neuro-inflammation and BBB permeability modulation has established the vulnerability of the aging brain to inhaled NPs toxicity. Taken together, our findings demonstrated that despite lack of brain translocation, exposure to TiO2 NPs induce BBB physiology alteration and neuro-inflammation that may lead to CNS disorders. Thereafter, identification of mediators and description of the neurotoxic effects may complete the assessment of the impact of TiO2 NPs exposure on the brain.
|
Page generated in 0.1011 seconds