Spelling suggestions: "subject:"bridge girder""
11 |
Concrete fluidity effects on bond of prestressed tendons for lightweight bridge girdersPerkins, Jake January 1900 (has links)
Master of Science / Department of Civil Engineering / Robert J. Peterman / With limited research being conducted solely on lightweight concrete prestressed bond
and current development-length equations based on tests performed on normal-weight members, more investigation on lightweight concrete prestress bond is necessary. Additionally, the effects of water-reducing agents on normal-weight and lightweight concrete need further exploration. The aim of this study was to examine these areas using two locally available lightweight aggregates from Kansas and one from North Carolina to determine if lightweight prestressed concrete bridge girders are a useful alternative for the Kansas Department of Transportation. The lightweight concrete mixes developed were capable of attaining 5000 psi compressive strength in 16 hours and 7000 psi in 28 days. During the large block pull-out test, the average maximum force at pull-out and first observable slip was higher for the block cast with a three inch slump then the companion specimen poured at a nine-inch slump. During flexural testing, the two beams not reaching nominal moment capacity, KC-9 and STA-9, failed in compression without strand end slip. The moment capacity was considerably greater for three-inch slump members than the companion specimen placed with nine-inch slump concrete.
|
12 |
Lateral torsional buckling of rectangular reinforced concrete beamsKalkan, Ilker 10 November 2009 (has links)
The study presents the results of an experimental and analytical investigation aimed at examining the lateral stability of rectangular reinforced concrete slender beams. In the experimental part of the investigation, a total of eleven reinforced concrete beams having a depth to width ratio between 10.20 and 12.45 and a length to width ratio between 96 and 156 were tested. Beam thickness, depth and unbraced length were 1.5 to 3.0 in., 18 to 44 in., and 12 to 39.75 ft, respectively. Each beam was subjected to a single concentrated load applied at midspan by means of a gravity load simulator that allowed the load to always remain vertical when the section displaces out of plane. The loading mechanism minimized the lateral translational and rotational restraints at the load application point to simulate the nature of gravity load. Each beam was simply-supported in and out of plane at the ends. The supports allowed warping deformations, yet prevented twisting rotations at the beam ends.
In the analytical part of the study, a formula was developed for determining the critical loads of lateral torsional buckling of rectangular reinforced concrete beams free from initial geometric imperfections. The influences of shrinkage cracking and inelastic stress-strain properties of concrete and the contribution of longitudinal reinforcement to the lateral stability are accounted for in the critical load formula. The experiments showed that the limit load of a concrete beam with initial geometric imperfections can be significantly lower than the critical load corresponding to its geometrically perfect configuration. Accordingly, a second formula was developed for the estimation of limit loads of reinforced concrete beams with initial lateral imperfections, by introducing the destabilizing effect of sweep to the critical load formula.
The experimental results were compared to the proposed analytical solution and to various lateral torsional buckling solutions in the literature. The formulation proposed in the present study was found to agree well with the experimental results. The incorporation of the geometric and material nonlinearities into the formula makes the proposed solution superior to the previous lateral torsional buckling solutions for rectangular reinforced concrete beams.
|
13 |
Lateral Stability Analysis of Precast Prestressed Bridge Girders During All Phases of ConstructionSathiraju, Venkata Sai Surya Praneeth 25 July 2019 (has links)
No description available.
|
14 |
Reliability Based Safety Level Evaluation Of Turkish Type Precast Prestressed Concrete Bridge Girders Designed In Accordance With The Load And Resistance Factor Desing MethodArginhan, Oktay 01 December 2010 (has links) (PDF)
The main aim of the present study is to evaluate the safety level of Turkish type precast prestressed concrete bridge girders designed according to American Association of State Highway and Transportation Officials Load and Resistance Factor Design (AASHTO LRFD) based on reliability theory. Span lengths varying from 25 m to 40 m are considered. Two types of design truck loading models are taken into account: H30S24-current design live load of Turkey and HL93-design live load model of AASHTO LRFD. The statistical parameters of both load and resistance components are estimated from local data and published data in the literature. The bias factors and coefficient of variation of live load are estimated by extrapolation of cumulative distribution functions of maximum span moments of truck survey data (Axle Weight Studies) that is gathered from the Division of Transportation and Cost Studies of the General Directorate of Highways of Turkey. The uncertainties associated with C40 class concrete and prestressing strands are evaluated by the test data of local manufacturers. The girders are designed according to the requirements of both Service III and Strength I limit states. The required number of strands is calculated and compared.
Increasing research in the field of bridge evaluation based on structural reliability justifies the consideration of reliability index as the primary measure of safety of bridges. The reliability indexes are calculated by different methods for both Strength I and Service III limit states. The reliability level of typical girders of Turkey is compared with those of others countries. Different load and resistance factors are intended to achieve the selected target reliability levels. For the studied cases, a set of load factors corresponding to different levels of reliability index is suggested for the two models of truck design loads. Analysis with Turkish type truck models results in higher reliability index compared to the USA type truck model for the investigated span lengths
|
15 |
The Design, Construction, and Testing of Scaled Post-Tensioned Concrete Bridge Girders with Bonded and Unbonded TendonsDavid S Derks (12190748) 18 April 2022 (has links)
<p>If designed and constructed properly, post-tensioned construction can provide improved durability and offers the ability to construct longer span bridges and curved girders. Furthermore, this method of construction has become economically competitive with traditional, pretensioned concrete and steel plate girder bridges. A critical issue, however, has been corrosion of the steel strand. While grouting has been the primary corrosion protection method for the strand, experience has shown that grouting presents its own problems and limitations that compromised the durability and service-life of bridges. As a result, unbonded post-tensioning has gained interest as it eliminates issues with grouting and allows for inspection as well as future strand replacement. The behavior and strength of structures constructed with unbonded post-tensioning, however, is not well understood, especially shear strength. Therefore, the objective of this research investigation is to evaluate the structural performance of prestressed girders containing unbonded tendons with a primary focus on shear strength. The scope of this phase of the research was to develop the means and methods to construct and test girder specimens with multiple design criteria and allow evaluation of multiple test variables. The research developed the materials and procedures to enable the large scale testing program to be developed. Finally, the procedures developed were verified through the construction of the initial set of test specimens and testing of the first shear specimen.</p>
|
16 |
Structural Reliability Study of Highway Bridge Girders Based on AASTHO LRFD Bridge Design SpecificationsDallakoti, Pramish Shakti January 2020 (has links)
No description available.
|
17 |
Akustisches SpRK-Monitoring mit SEA und verteilten faseroptischen SensorenXu, Ronghua, Hicke, Konstantin, Chruscicki, Sebastian, Marx, Steffen 08 November 2023 (has links)
Im vorliegenden Bericht wurde untersucht, wie Spanndrahtbrüche in einem Brückenträger sowohl mittels Schallemissionsanalyse (SEA) als auch mit (eingebetteter) verteilter faseroptischer akustischer Sensorik (DAS) zu erkennen sind. Die Ergebnisse zeigen, dass die Bruchsignale anhand beider Messverfahren detektiert werden können. Die jeweils detektierten Drahtbrüche werden miteinander verglichen. Durch eine Gegenüberstellung werden SEA und DAS detailliert dargestellt.
|
18 |
Use of Photogrammetry Aided Damage Detection for Residual Strength Estimation of Corrosion Damaged Prestressed Concrete Bridge GirdersNeeli, Yeshwanth Sai 27 July 2020 (has links)
Corrosion damage reduces the load-carrying capacity of bridges which poses a threat to passenger safety. The objective of this research was to reduce the resources involved in conventional bridge inspections which are an important tool in the condition assessment of bridges and to help in determining if live load testing is necessary. This research proposes a framework to link semi-automated damage detection on prestressed concrete bridge girders with the estimation of their residual flexural capacity. The framework was implemented on four full-scale corrosion damaged girders from decommissioned bridges in Virginia. 3D point clouds of the girders reconstructed from images using Structure from Motion (SfM) approach were textured with images containing cracks detected at pixel level using a U-Net (Fully Convolutional Network). Spalls were detected by identifying the locations where normals associated with the points in the 3D point cloud deviated from being perpendicular to the reference directions chosen, by an amount greater than a threshold angle. 3D textured mesh models, overlaid with the detected cracks and spalls were used as 3D damage maps to determine reduced cross-sectional areas of prestressing strands to account for the corrosion damage as per the recommendations of Naito, Jones, and Hodgson (2011). Scaling them to real-world dimensions enabled the measurement of any required dimension, eliminating the need for physical contact.
The flexural capacities of a box beam and an I-beam estimated using strain compatibility analysis were validated with the actual capacities at failure sections determined from four destructive tests conducted by Al Rufaydah (2020). Along with the reduction in the cross-sectional areas of strands, limiting the ultimate strain that heavily corroded strands can develop was explored as a possible way to improve the results of the analysis. Strain compatibility analysis was used to estimate the ultimate rupture strain, in the heavily corroded bottommost layer prestressing strands exposed before the box beam was tested. More research is required to associate each level of strand corrosion with an average ultimate strain at which the corroded strands rupture. This framework was found to give satisfactory estimates of the residual strength. Reduction in resources involved in current visual inspection practices and eliminating the need for physical access, make this approach worthwhile to be explored further to improve the output of each step in the proposed framework. / Master of Science / Corrosion damage is a major concern for bridges as it reduces their load carrying capacity. Bridge failures in the past have been attributed to corrosion damage. The risk associated with corrosion damage caused failures increases as the infrastructure ages. Many bridges across the world built forty to fifty years ago are now in a deteriorated condition and need to be repaired and retrofitted. Visual inspections to identify damage or deterioration on a bridge are very important to assess the condition of the bridge and determine the need for repairing or for posting weight restrictions for the vehicles that use the bridge. These inspections require close physical access to the hard-to-reach areas of the bridge for physically measuring the damage which involves many resources in the form of experienced engineers, skilled labor, equipment, time, and money. The safety of the personnel involved in the inspections is also a major concern. Nowadays, a lot of research is being done in using Unmanned Aerial Vehicles (UAVs) like drones for bridge inspections and in using artificial intelligence for the detection of cracks on the images of concrete and steel members.
Girders or beams in a bridge are the primary longitudinal load carrying members. Concrete inherently is weak in tension. To address this problem, High Strength steel reinforcement (called prestressing steel or prestressing strands) in prestressed concrete beams is pre-loaded with a tensile force before the application of any loads so that the regions which will experience tension under the service loads would be subjected to a pre-compression to improve the performance of the beam and delay cracking. Spalls are a type of corrosion damage on concrete members where portions of concrete fall off (section loss) due to corrosion in the steel reinforcement, exposing the reinforcement to the environment which leads to accelerated corrosion causing a loss of cross-sectional area and ultimately, a rupture in the steel. If the process of detecting the damage (cracks, spalls, exposed or severed reinforcement, etc.) is automated, the next logical step that would add great value would be, to quantify the effect of the damage detected on the load carrying capacity of the bridges. Using a quantified estimate of the remaining capacity of a bridge, determined after accounting for the corrosion damage, informed decisions can be made about the measures to be taken. This research proposes a stepwise framework to forge a link between a semi-automated visual inspection and residual capacity evaluation of actual prestressed concrete bridge girders obtained from two bridges that have been removed from service in Virginia due to extensive deterioration.
3D point clouds represent an object as a set of points on its surface in three dimensional space. These point clouds can be constructed either using laser scanning or using Photogrammetry from images of the girders captured with a digital camera. In this research, 3D point clouds are reconstructed from sequences of overlapping images of the girders using an approach called Structure from Motion (SfM) which locates matched pixels present between consecutive images in the 3D space. Crack-like features were automatically detected and highlighted on the images of the girders that were used to build the 3D point clouds using artificial intelligence (Neural Network). The images with cracks highlighted were applied as texture to the surface mesh on the point cloud to transfer the detail, color, and realism present in the images to the 3D model. Spalls were detected on 3D point clouds based on the orientation of the normals associated with the points with respect to the reference directions. Point clouds and textured meshes of the girders were scaled to real-world dimensions facilitating the measurement of any required dimension on the point clouds, eliminating the need for physical contact in condition assessment. Any cracks or spalls that went unidentified in the damage detection were visible on the textured meshes of the girders improving the performance of the approach. 3D textured mesh models of the girders overlaid with the detected cracks and spalls were used as 3D damage maps in residual strength estimation.
Cross-sectional slices were extracted from the dense point clouds at various sections along the length of each girder. The slices were overlaid on the cross-section drawings of the girders, and the prestressing strands affected due to the corrosion damage were identified. They were reduced in cross-sectional area to account for the corrosion damage as per the recommendations of Naito, Jones, and Hodgson (2011) and were used in the calculation of the ultimate moment capacity of the girders using an approach called strain compatibility analysis. Estimated residual capacities were compared to the actual capacities of the girders found from destructive tests conducted by Al Rufaydah (2020). Comparisons are presented for the failure sections in these tests and the results were analyzed to evaluate the effectiveness of this framework. More research is to be done to determine the factors causing rupture in prestressing strands with different degrees of corrosion. This framework was found to give satisfactory estimates of the residual strength. Reduction in resources involved in current visual inspection practices and eliminating the need for physical access, make this approach worthwhile to be explored further to improve the output of each step in the proposed framework.
|
19 |
Diagnostika vybrané mostní konstrukce / Diagnostics of selected bridge structureJedlička, Lukáš January 2020 (has links)
This thesis deals with building survey of bridge register number 43-011 located near Česká. The part of thesis is literary reaserch dealing with system of management and cotrol of road bridges, precast bridge contructions made with DS-C type girgers and about general diagnostical methods. The practical section contains of in situ diagnostical survey and bridge inspection, laboratory evaluation and comparision, load bearing capacity calculation and suggestion of potencional technical precautions.
|
Page generated in 0.0609 seconds