• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 9
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A FRAMEWORK FOR EFFICIENT BANDWIDTH MANAGEMENT IN BROADBAND WIRELESS ACCESS SYSTEMS

Al-Manthari, Bader 06 April 2009 (has links)
Broadband Wireless Access Systems (BWASs) such as High Speed Downlink Packet Access (HSDPA) and the Worldwide Interoperability for Microwave Access (WiMAX), pose a myriad of new opportunities for leveraging the support of a wide range of “content-rich” mobile multimedia services with diverse Quality of Service (QoS) requirements. This is due to the remarkably high bandwidth that is supported by these systems, which was previously only available to wireline connections. Despite the support for such high bandwidth, satisfying the diverse QoS of users while maximizing the revenues of network operators is still one of the major issues in these systems. Bandwidth management, therefore, will play a decisive role in the success of such wireless access systems. Without efficient bandwidth management, network operators may not be able to meet the growing demand of users for multimedia services, and may consequently suffer great revenue loss. Bandwidth management in BWASs is, however, a challenging problem due to many issues that need to be taken into consideration. Examples of such issues include the diverse QoS requirements of the services that BWASs support, the varying channel quality conditions of mobile users, and hence the varying amount of resources that are needed to guarantee certain QoS levels during the lifetime of user connections, the utilization of shared channels for data delivery instead of dedicated ones and network congestion. In this thesis, we address the problem of bandwidth management in BWASs and propose efficient economic-based solutions in order to deal with these issues at different bandwidth management levels, and hence enhance the QoS support in these systems. Specifically, we propose a bandwidth management framework for BWASs. The framework is designed to support multiple classes of traffic with different users having different QoS requirements, maximize the throughput of BWASs, support inter- and intra-class fairness, prevent network congestion and maximize the network operator’s revenues. The framework consists of three related components, namely packet scheduling, bandwidth provisioning and Call Admission Control-based dynamic pricing. By efficiently managing the wireless bandwidth prior to users’ admission (i.e.,pre-admission bandwidth management) and during the users’ connections (i.e., post-admission bandwidth management), these schemes are shown to achieve the design goals of our framework. / Thesis (Ph.D, Computing) -- Queen's University, 2009-04-01 15:35:36.213
2

A study of business strategies for communication services industry in the time of digital convergence

Tsai, Ming-te 11 July 2008 (has links)
Digital technology, network compression technology and Internet technology universal utilization, causes the communication market inherent in the increasingly blurred boundaries and a convergence of the phenomenon. Under this background, the industry unceasingly promotes the service more and more, or provides triple play (voice, data and video service) to change the industrial competition situation. This research union "Grounded Theory" and "Importance-Performance Analysis " to Taiwan's telecommunications market to explore the theme through telecommunications technology and innovation as the main shaft, supported by the world's major countries in Europe, the United States and Japan's market performance. An analysis of the trends of digital convergence, policies and the evolution of the telecommunications industry. The research results are as follows: 1. The government unit: Will grasp the future industry tendency to develop the appropriate regulation system from the recent communication industrial structure by the industrial change. 2. The communications industry: To develop digital convergence in the competition strategy by factors on telecommunication environment, market analysis, technical development situation and government policy.
3

A Spatial Decision Support System for Planning Broadband, Fixed Wireless Telecommunication Networks

Scheibe, Kevin Paul 14 April 2003 (has links)
Over the last two decades, wireless technology has become ubiquitous in the United States and other developed countries. Consumer devices such as AM/FM radios, cordless and cellular telephones, pagers, satellite televisions, garage door openers, and television channel changers are just some of the applications of wireless technology. More recently, wireless computer networking has seen increasing employment. A few reasons for this move toward wireless networking are improved electronics transmitters and receivers, reduced costs, simplified installation, and enhanced network expandability. The objective of the study is to generate understanding of the planning inherent in a broadband, fixed wireless telecommunication network and to implement that knowledge into an SDSS. Intermediate steps toward this goal include solutions to both fixed wireless point-to-multipoint (PMP) and fixed wireless mesh networks, which are developed and incorporated into the SDSS. This study explores the use of a Spatial Decision Support System (SDSS) for broadband fixed wireless connectivity to solve the wireless network planning problem. The spatial component of the DSS is a Geographic Information System (GIS), which displays visibility for specific tower locations. The SDSS proposed here incorporates cost, revenue, and performance capabilities of a wireless technology applied to a given area. It encompasses cost and range capabilities of wireless equipment, the customers' propensity to pay, the market penetration of a given service offering, the topology of the area in which the wireless service is proffered, and signal obstructions due to local geography. This research is both quantitative and qualitative in nature. Quantitatively, the wireless network planning problem may be formulated as integer programming problems (IP). The line-of-sight restriction imposed by several extant wireless technologies necessitates the incorporation of a GIS and the development of an SDSS to facilitate the symbiosis of the mathematics and geography. The qualitative aspect of this research involves the consideration of planning guidelines for the general wireless planning problem. Methodologically, this requires a synthesis of the literature and insights gathered from using the SDSS above in a what-if mode. / Ph. D.
4

QoS Scheduling in IEEE 802.16 Broadband Wireless Access Networks

Hou, Fen January 2008 (has links)
With the exploding increase of mobile users and the release of new wireless applications, the high bandwidth requirement has been taking as a main concern for the design and development of the wireless techniques. There is no doubt that broadband wireless access with the support of heterogeneous kinds of applications is the trend in the next generation wireless networks. As a promising broadband wireless access standard, IEEE 802.16 has attracted extensive attentions from both industry and academia due to its high data rate and the inherent media access control (MAC) mechanism, which takes the service differentiation and quality of service (QoS) provisioning into account. To achieve service differentiation and QoS satisfaction for heterogenous applications is a very complicated issue. It refers to many fields, such as connection admission control (CAC), congestion control, routing algorithm, MAC protocol, and scheduling scheme. Among these fields, packet scheduling plays one of the most important roles in fulfilling service differentiation and QoS provisioning. It decides the order of packet transmissions, and provides mechanisms for the resource allocation and multiplexing at the packet level to ensure that different types of applications meet their service requirements and the network maintains a high resource utilization. In this thesis, we focus on the packet scheduling for difficult types of services in IEEE 802.16 networks, where unicast and mulitcast scheduling are investigated. For unicast scheduling, two types of services are considered: non-real-time polling service (nrtPS) and best effort (BE) service. We propose a flexible and efficient resource allocation and scheduling framework for nrtPS applications to achieve a tradeoff between the delivery delay and resource utilization, where automatic repeat request (ARQ) mechanisms and the adaptive modulation and coding (AMC) technique are jointly considered. For BE service, considering the heterogeneity of subscriber stations (SSs) in IEEE 802.16 networks, we propose the weighted proportional fairness scheduling scheme to achieve the flexible scheduling and resource allocation among SSs based on their traffic demands/patterns. For multicast scheduling, a cooperative multicast scheduling is proposed to achieve high throughput and reliable transmission. By using the two-phase transmission model to exploit the spatial diversity gain in the multicast scenario, the proposed scheduling scheme can significantly improve the throughput not only for all multicast groups, but also for each group member. Analytical models are developed to investigate the performance of the proposed schemes in terms of some important performance measurements, such as throughput, resource utilization, and service probability. Extensive simulations are conducted to illustrate the efficient of the proposed schemes and the accuracy of the analytical models. The research work should provide meaningful guidelines for the system design and the selection of operational parameters, such as the number of TV channels supported by the network, the achieved video quality of each SS in the network, and the setting of weights for SSs under different BE traffic demands.
5

QoS Scheduling in IEEE 802.16 Broadband Wireless Access Networks

Hou, Fen January 2008 (has links)
With the exploding increase of mobile users and the release of new wireless applications, the high bandwidth requirement has been taking as a main concern for the design and development of the wireless techniques. There is no doubt that broadband wireless access with the support of heterogeneous kinds of applications is the trend in the next generation wireless networks. As a promising broadband wireless access standard, IEEE 802.16 has attracted extensive attentions from both industry and academia due to its high data rate and the inherent media access control (MAC) mechanism, which takes the service differentiation and quality of service (QoS) provisioning into account. To achieve service differentiation and QoS satisfaction for heterogenous applications is a very complicated issue. It refers to many fields, such as connection admission control (CAC), congestion control, routing algorithm, MAC protocol, and scheduling scheme. Among these fields, packet scheduling plays one of the most important roles in fulfilling service differentiation and QoS provisioning. It decides the order of packet transmissions, and provides mechanisms for the resource allocation and multiplexing at the packet level to ensure that different types of applications meet their service requirements and the network maintains a high resource utilization. In this thesis, we focus on the packet scheduling for difficult types of services in IEEE 802.16 networks, where unicast and mulitcast scheduling are investigated. For unicast scheduling, two types of services are considered: non-real-time polling service (nrtPS) and best effort (BE) service. We propose a flexible and efficient resource allocation and scheduling framework for nrtPS applications to achieve a tradeoff between the delivery delay and resource utilization, where automatic repeat request (ARQ) mechanisms and the adaptive modulation and coding (AMC) technique are jointly considered. For BE service, considering the heterogeneity of subscriber stations (SSs) in IEEE 802.16 networks, we propose the weighted proportional fairness scheduling scheme to achieve the flexible scheduling and resource allocation among SSs based on their traffic demands/patterns. For multicast scheduling, a cooperative multicast scheduling is proposed to achieve high throughput and reliable transmission. By using the two-phase transmission model to exploit the spatial diversity gain in the multicast scenario, the proposed scheduling scheme can significantly improve the throughput not only for all multicast groups, but also for each group member. Analytical models are developed to investigate the performance of the proposed schemes in terms of some important performance measurements, such as throughput, resource utilization, and service probability. Extensive simulations are conducted to illustrate the efficient of the proposed schemes and the accuracy of the analytical models. The research work should provide meaningful guidelines for the system design and the selection of operational parameters, such as the number of TV channels supported by the network, the achieved video quality of each SS in the network, and the setting of weights for SSs under different BE traffic demands.
6

Quantitative Interference and Capacity Analysis of Broadband Multi-Hop Relaying Networks

AHMED, Hassan A 06 May 2011 (has links)
This thesis analyzes the Bit Error Rate (BER) performance of Orthogonal Frequency Division Multiplexing (OFDM) systems in mobile multi-hop relaying channels. We consider the uplink scenario and quantify the effects of mobile channel impairments such as Doppler Shift due to user mobility per hop, high-power amplifier distortions when amplifying the transmitted/relayed OFDM symbol per hop, as well as the cumulative effects of these impairments over multi-hop relaying channels. It is shown that the resulting inter-carrier interference (ICI) due to the cumulative effects of the phase noise generated by these impairments per hop becomes very significant in a multi-hop relaying communication system, and severely degrades the BER performance of the system. Simulation results agree well with, and validate the analysis. / Thesis (Ph.D, Electrical & Computer Engineering) -- Queen's University, 2011-05-05 15:15:39.576
7

Wireless local area radio networks : wideband characterisation and measurements at 62.4GHz

Siamarou, Andreas G. January 2001 (has links)
The presence of multipath propagation in indoor environments limits the performance of wideband radio communication systems and also the maximum data rate that can be feasible. This thesis addresses the dynamics of propagation mechanisms needed to design and exploit future broadband wireless local area networks in the 60GHz millimetre-wave band. The frequency band between 62-63GHz with data rates up to 155Mb/s, has been provisionally assigned for Mobile Broadband Systems. The main emphasis of this study was to provide an original contribution to the development, design and planning of future broadband communication systems using new high-resolution wideband channel measurement data. Based on this data, spatial and temporal statistics of several line-of-sight radio paths in a University campus are presented and analysed. In order to enable measurement of the wideband propagation characteristics a high-resolution (Ins) wideband Frequency-swept channel sounder was designed and implemented at 62.4GHz. The channel sounder has been built around a Vector Network Analyser to measure the complex transfer function of the channel. The instantaneous coherence bandwidth is found to be highly variable with the location of the receiver with respect to the base station. With delay spread values ranging from 20 to 70ns the coherence bandwidth remains most of the times below 10MHz. Based on the maximum delay spread of 68ns obtained in a 41m long narrow corridor, a BER of 10" 3 and normalised delay spread of 0.1, the minimum data transmission rate is estimated at 1.47 Mb/s. For a 12.80m room environment with maximum delay spread of 20ns the minimum data transmission rate is 5Mb/s. To achieve higher data transmission rates channel protection countermeasures appears to be necessary. However limiting the extent of a picocell size and utilising the potential capability of frequency re-use at 62.4GHz can result in radio network implementation without the complexity of countermeasures. Results relating to coherence bandwidth variability in multipath conditions confirm that higher user mobility envisaged for MBS would present a real challenge to the achievement of data transmission rates of the order of 155Mb/s. The research work reported in the thesis has been able to identify and extract from extensive high resolution wideband propagation the necessary design characteristics for the development of realistic radio planning models. Using measured results obtained in a number of radio paths geometries, the objectives of the project have been largely achieved and further work is recommended.
8

A Framework for policy-based Quality of Service for fixed broadband wireless networks

Parthasarathy, Rangaprabhu 10 July 2003 (has links)
This thesis describes an architecture for policy-based quality of service (QoS) for fixed broadband wireless systems. An implementation of the proposed architecture for the Local Multipoint Distribution Service (LMDS) wireless network in Blacksburg, Virginia is described in detail. The focus of the research work was to enable simpler management of the LMDS system and to design and enable network QoS. The thesis examines various means to provide QoS in the network. It highlights issues related to enabling QoS in the VT-LMDS network, like prioritized access, resource management, service differentiation, and lack of predictability in network performance. Quality of service assumes a definition based on the context and application of interest. This research focuses on enabling service differentiation and intelligent resource management based on network conditions and link utilization. A software application that serves as a model of the described architecture was developed using the C++ programming language. The tool uses the Simple Network Management Protocol (SNMP) for the network management operations. The design, implementation issues and the advantages and shortcomings of the tool are outlined and a short primer on the use of the tool is provided. Finally, possibilities for future work in this area especially towards enabling the tool to work with other vendor-specific LMDS systems and non-LMDS fixed broadband wireless systems are examined and the issues in implementing one such system are described. / Master of Science
9

A Coverage Area Estimation Model for Interference-Limited Non-Line-of-Sight Point-to-Multipoint Fixed Broadband Wireless Communication Systems

RamaSarma, Vaidyanathan 04 October 2002 (has links)
First-generation, line-of-sight (LOS) fixed broadband wireless access techniques have been around for several years. However, services based on this technology have been limited in scope to service areas where transceivers can communicate with their base stations, unimpeded by trees, buildings and other obstructions. This limitation has serious consequences in that the system can deliver only 50% to 70% coverage within a given cell radius, thus affecting earned revenue. Next generation broadband fixed wireless access techniques are aimed at achieving a coverage area greater than 90%. To achieve this target, these techniques must be based on a point-to-multipoint (PMP) cellular architecture with low base station antennas, thus possessing the ability to operate in true non-line-of-sight (NLOS) conditions. A possible limiting factor for these systems is link degradation due to interference. This thesis presents a new model to estimate the levels of co-channel interference for such systems operating within the 3.5 GHz multichannel multipoint distribution service (MMDS) band. The model is site-specific in that it uses statistical building/roof height distribution parameters obtained from practically modeling several metropolitan cities in the U.S. using geographic information system (GIS) tools. This helps to obtain a realistic estimate and helps analyze the tradeoff between cell radius and modulation complexity. Together, these allow the system designer to decide on an optimal location for placement of customer premises equipment (CPE) within a given cell area. / Master of Science
10

Terrestrial radio wave propagation at millimeter-wave frequencies

Xu, Hao 05 May 2000 (has links)
This research focuses on radio wave propagation at millimeter-wave frequencies. A measurement based channel characterization approach is taken in the investigation. First, measurement techniques are analyzed. Three types of measurement systems are designed, and implemented in measurement campaigns: a narrowband measurement system, a wideband measurement system based on Vector Network Analyzer, and sliding correlator systems at 5.8+AH4AXA-mbox{GHz}, 38+AH4AXA-mbox{GHz} and 60+AH4AXA-mbox{GHz}. The performances of these measurement systems are carefully compared both analytically and experimentally. Next, radio wave propagation research is performed at 38+AH4AXA-mbox{GHz} for Local Multipoint Distribution Services (LMDS). Wideband measurements are taken on three cross-campus links at Virginia Tech. The goal is to determine weather effects on the wideband channel properties. The measurement results include multipath dispersion, short-term variation and signal attenuation under different weather conditions. A design technique is developed to estimate multipath characteristics based on antenna patterns and site-specific information. Finally, indoor propagation channels at 60+AH4AXA-mbox{GHz} are studied for Next Generation Internet (NGI) applications. The research mainly focuses on the characterization of space-time channel structure. Multipath components are resolved both in time of arrival (TOA) and angle of arrival (AOA). Results show an excellent correlation between the propagation environments and the channel multipath structure. The measurement results and models provide not only guidelines for wireless system design and installation, but also great insights in millimeter-wave propagation. / Ph. D.

Page generated in 0.0924 seconds