• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 9
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

數位生活未來之發展與趨勢研究 -以仲琦科技為例 / Exploring the trend of the digital life- a case of Hitron Technologies Inc.

劉美蘭, Liu, Mei Lan Unknown Date (has links)
近年來科技匯流發展日行千里,新興無線寬頻的接取技術(Broadband Wireless Access)不斷升級,為民眾的生活帶來更便利的創新應用,而寬頻接取服務的亦由以往一種技術提供一種服務的方式,逐漸轉換為涵蓋數據(Data)、語音(Voice)及影音內容(Video)等三種服務的匯流。加速了電信、廣電與網路通訊產業升級的需求,也帶來了新的市場動能與發展契機。 本研究以台灣為研究範本,以個案研究方法來探討在網路為基礎的數位匯流環境下數位生活之發展趨勢、個案公司科技產品未來的發展趨勢及因應策略。 而本研究發現未來家用閘道器產品市場,將會朝向整合家中所有可上網設備的整合性產品特性發展。亦將會是國內網通設備商值得切入的新領域。娛樂型家用閘道器,目前市場上多以機上盒(Set top box, STB)加上Router的功能型態出現,惟必須等待STB零售市場打開後,國內的廠商將會有機會創造更大利潤空間。而個案公司在研發方向應以Cable Docsis的核心技術為中心,從水平方向擴展至家庭網路的Home applications。追求更快的速度,更多元化的網路技術和更方便的寬頻服務。在縱向方面,我們則以完整的解決方案為主軸,往頭端CMTS技術和網管為發展重點。
12

Contributions to channel modelling and performance estimation of HAPS-based communication systems regarding IEEE Std 802.16TM

Palma Lázgare, Israel Romualdo 24 October 2011 (has links)
New and future telecommunication networks are and will be broadband type. The existing terrestrial and space radio communication infrastructures might be supplemented by new wireless networks that make and will make use of aeronautics-technology. Our study/contribution is referring to radio communications based on radio stations aboard a stratospheric platform named, by ITU-R, HAPS (High Altitude Platform Station). These new networks have been proposed as an alternative technology within the ITU framework to provide various narrow/broadband communication services. With the possibility of having a payload for Telecommunications in an aircraft or a balloon (HAPS), it can be carried out radio communications to provide backbone connections on ground and to access to broadband points for ground terminals. The latest implies a complex radio network planning. Therefore, the radio coverage analysis at outdoors and indoors becomes an important issue on the design of new radio systems. In this doctoral thesis, the contribution is related to the HAPS application for terrestrial fixed broadband communications. HAPS was hypothesised as a quasi-static platform with height above ground at the so-called stratospheric layer. Latter contribution was fulfilled by approaching via simulations the outdoor-indoor coverage with a simple efficient computational model at downlink mode. This work was assessing the ITU-R recommendations at bands recognised for the HAPS-based networks. It was contemplated the possibility of operating around 2 GHz (1820 MHz, specifically) because this band is recognised as an alternative for HAPS networks that can provide IMT-2000 and IMT-Advanced services. The global broadband radio communication model was composed of three parts: transmitter, channel, and receiver. The transmitter and receiver parts were based on the specifications of the IEEE Std 802.16TM-2009 (with its respective digital transmission techniques for a robust-reliable link), and the channel was subjected to the analysis of radio modelling at the level of HAPS and terrestrial (outdoors plus indoors) parts. For the channel modelling was used the two-state characterisation (physical situations associated with the transmitted/received signals), the state-oriented channel modelling. One of the channel-state contemplated the environmental transmission situation defined by a direct path between transmitter and receiver, and the remaining one regarded the conditions of shadowing. These states were dependent on the elevation angle related to the ray-tracing analysis: within the propagation environment, it was considered that a representative portion of the total energy of the signal was received by a direct or diffracted wave, and the remaining power signal was coming by a specular wave, to last-mentioned waves (rays) were added the scattered and random rays that constituted the diffuse wave. At indoors case, the variations of the transmitted signal were also considering the following matters additionally: the building penetration, construction material, angle of incidence, floor height, position of terminal in the room, and indoor fading; also, these indoors radiocommunications presented different type of paths to reach the receiver: obscured LOS, no LOS (NLOS), and hard NLOS. The evaluation of the feasible performance for the HAPS-to-ground terminal was accomplished by means of thorough simulations. The outcomes of the experiment were presented in terms of BER vs. Eb/N0 plotting, getting significant positive conclusions for these kind of system as access network technology based on HAPS.
13

Location based authenticated multi-services group key management for cyber security in high speed broadband wireless multicast communications : multi-service group key management scheme with location based handover authentication for multi-handoffs participating in multi-group service subscriptions, its performance evaluation and security correctness in high speed broadband wireless multicast communications

Mapoka, Trust Tshepo January 2015 (has links)
Secure information exchanges over cyberspace is on the increase due to the convergence of wireless and mobile access technologies in all businesses. Accordingly, with the proliferation of diverse multicast group service subscriptions that are possible to co-exist within a single broadband network, there is also huge demand by the mobile subscribers to ubiquitously access these services over high speed broadband using their portable devices. Likewise, the Network Providers (NPs) invest hugely in infrastructure deployment to disseminate these services efficiently and concomitantly. Therefore, cyber security in any business is obligatory to restrict access of disseminated services to only authorised personnel. This becomes a vital requirement for a successful commercialisation of exchanged group services. The standard way to achieve cyber security in a wireless mobile multicast communication environment is through confidentiality using Group Key Management (GKM).The existing GKM schemes for secure wireless multicast from literature only target single group service confidentiality; however, the adoption of multiple group service confidentiality in them involve inefficient management of keys that induce huge performance overheads unbearable for real time computing. Therefore, a novel authenticated GKM scheme for multiple multicast group subscriptions known as slot based multiple group key management (SMGKM) is proposed. In the SMGKM, the handovers move across diverse decentralised clusters of homogeneous or heterogeneous wireless access network technologies while participating in multiple group service subscriptions. Unlike the conventional art, the SMGKM advances its security by integrating location based authentication and GKM functions. Both functions are securely offloaded from the Domain Key Distributor (DKD) to the intermediate cluster controllers, Area Key Distributors (AKDs), in a distributed fashion, using the proposed location based authenticated membership list (SKDL). A significant upgrade of fast handoff performance with reduced performance overheads of the SMGKM scheme is achieved. The developed numerical analysis and the simulation results display significant resource economy in terms of reduced rekeying transmission, communication bandwidth and storage overheads while providing enhanced security. The performance of the SMGKM in a high speed environment is also evaluated and has demonstrated that SMGKM outperforms the previous work. Finally, the SMGKM correctness against various attacks is verified using BAN logic, the eminent tool for analysing the widely deployed security protocols. The security analysis demonstrates that SMGKM can counteract the security flaws and redundancies identified in the chosen related art.
14

Location based authenticated multi-services group key management for cyber security in high speed broadband wireless multicast communications. Multi-service group key management scheme with location based handover authentication for multi-handoffs participating in multi-group service subscriptions, its performance evaluation and security correctness in high speed broadband wireless multicast communications

Mapoka, Trust Tshepo January 2015 (has links)
Secure information exchanges over cyberspace is on the increase due to the convergence of wireless and mobile access technologies in all businesses. Accordingly, with the proliferation of diverse multicast group service subscriptions that are possible to co-exist within a single broadband network, there is also huge demand by the mobile subscribers to ubiquitously access these services over high speed broadband using their portable devices. Likewise, the Network Providers (NPs) invest hugely in infrastructure deployment to disseminate these services efficiently and concomitantly. Therefore, cyber security in any business is obligatory to restrict access of disseminated services to only authorised personnel. This becomes a vital requirement for a successful commercialisation of exchanged group services. The standard way to achieve cyber security in a wireless mobile multicast communication environment is through confidentiality using Group Key Management (GKM).The existing GKM schemes for secure wireless multicast from literature only target single group service confidentiality; however, the adoption of multiple group service confidentiality in them involve inefficient management of keys that induce huge performance overheads unbearable for real time computing. Therefore, a novel authenticated GKM scheme for multiple multicast group subscriptions known as slot based multiple group key management (SMGKM) is proposed. In the SMGKM, the handovers move across diverse decentralised clusters of homogeneous or heterogeneous wireless access network technologies while participating in multiple group service subscriptions. Unlike the conventional art, the SMGKM advances its security by integrating location based authentication and GKM functions. Both functions are securely offloaded from the Domain Key Distributor (DKD) to the intermediate cluster controllers, Area Key Distributors (AKDs), in a distributed fashion, using the proposed location based authenticated membership list (SKDL). A significant upgrade of fast handoff performance with reduced performance overheads of the SMGKM scheme is achieved. The developed numerical analysis and the simulation results display significant resource economy in terms of reduced rekeying transmission, communication bandwidth and storage overheads while providing enhanced security. The performance of the SMGKM in a high speed environment is also evaluated and has demonstrated that SMGKM outperforms the previous work. Finally, the SMGKM correctness against various attacks is verified using BAN logic, the eminent tool for analysing the widely deployed security protocols. The security analysis demonstrates that SMGKM can counteract the security flaws and redundancies identified in the chosen related art.
15

Receiver Channelizer For FBWA System Confirming To WiMAX Standard

Hoda, Nazmul 02 1900 (has links)
Fixed Broadband Wireless Access (FBWA) is a technology aimed at providing high-speed wireless Internet access, over a wide area, from devices such as personal computers and laptops. FBWA channels are defined in the range of 1-20 MHz which makes the RF front end (RFE) design extremely challenging. In its pursuit to standardize the Broadband Wireless Access (BWA) technologies, IEEE working group 802.16 for Broadband Wireless Access has released the fixed BWA standard IEEE 802.16 – 2004 in 2004. This standard is further backed by a consortium, of leading wireless vendors, chip manufacturers and service providers, officially known as Wireless Interoperability for Microwave Access (WiMAX). In general, any wireless base station (BS), supporting a number of contiguous Frequency Division Multiplexed (FDM) channels has to incorporate an RF front end (RFE) for each RF channel. The precise job of the RFE is to filter the desired channel from a group of RF channels, digitize it and present it to the subsequent baseband system at the proper sampling rate. The system essentially has a bandpass filter (BPF) tuned to the channel of interest followed by a multiplier which brings the channel to a suitable intermediate frequency (IF). The IF output is digitized by an ADC and then brought to the baseband by an appropriate digital multiplier. The baseband samples, thus generated, are at the ADC sampling rate which is significantly higher than the target sampling rate, which is defined by the wireless protocol in use. As a result a sampling rate conversion (SRC) is performed on these baseband samples to bring the channel back to the target sampling rate. Since the input sampling rate need not be an integer multiple of the target sampling rate, Fractional SRC (FSRC) is required in most of the cases. Instead of using a separate ADC and IF section for each individual channels, most systems use a common IF section, followed by a wideband ADC, which operates over a wide frequency band containing a group of contiguous FDM channels. In this case a channelizer is employed to digitally extract the individual channels from the digital IF samples. We formally call this system a receiver channelizer. Such an implementation presents considerable challenge in terms of the computational requirement and of course the cost of the BS. The computational complexity further goes up for FBWA system where channel bandwidth is in the order of several MHz. Though such a system has been analyzed for narrow band wireless systems like GSM, to the best of our knowledge no analysis seems to have been carried out for a wideband system such as WiMAX. In this work, we focus on design of a receiver channelizer for WiMAX BS, which can simultaneously extract a group of contiguous FDM RF channels supported by the BS. The main goal is to obtain a simple, low cost channelizer architecture, which can be implemented in an FPGA. There are a number of techniques available in the literature, from Direct Digital Conversion to Polyphase FFT Filter Banks (PFFB), which can do the job of channelization. But each of them operates with certain constraints and, as a result, suits best to a particular application. Further all of these techniques are generic in nature, in the sense that their structure is independent of any particular standard. With regard to computational requirement of these techniques, PFFB is the best, with respect to the number of complex multiplications required for its implementation. But it needs two very stringent conditions to be satisfied, viz. the number of channels to be extracted is equal to the decimation factor and the sampling rate is a power of 2 times baseband bandwidth. Clearly these conditions may not be satisfied by different wireless communication standards, and in fact, this is not satisfied by the WiMAX standard. This gives us the motivation to analyze the receiver channelizer for WiMAX BS and to find an efficient and low cost architecture of the same. We demonstrate that even though the conditions required by PFFB are not satisfied by the WiMAX standard, we can modify the overall architecture to include the PFFB structure. This is achieved by dividing the receiver channelizer into two blocks. The first block uses the PFFB structure to separate the desired number of channels from the input samples. This process also achieves an integer SRC by a factor that is equal to the number of channels being extracted. This block generates baseband outputs whose sampling rates are related to their target sampling rate by a fractional multiplication factor. In order to bring the channels to their target sampling rate, each output from the PFFB block is fed to a FSRC block, whose job is to use an efficient FSRC algorithm to generate the samples at the target sampling rate. We show that the computational complexity, as compared to the direct implementation, is reduced by a factor, which is approximately equal to the square of the number of channels. After mathematically formulating the receiver channelizer for WiMAX BS, we perform the simulation of the system using a software tool. There are two basic motives behind the simulation of the system which has a mathematical model. Firstly, the software simulation will give an idea whether the designed system is physically realizable. Secondly, this will help in designing the logic for different blocks of the system. Once these individual blocks are simulated and tested, they can be smoothly ported onto an FPGA. For simulation purpose, we parameterize the receiver channelizer in such a way that it can be reconfigured for different ADC sampling rates and IF frequencies, by changing the input clock rate. The system is also reconfigurable in terms of the supported channel bandwidth. This is achieved by storing all the filter coefficients pertaining to each channel type, and loading the required coefficients into the computational engine. Using this methodology we simulate the system for three different IF frequencies (and the corresponding ADC sampling rates) and three different channel types, thus leading to nine different system configurations. The simulation results are in agreement with the mathematical model of the system. Further, we also discuss some important implementation issues for the reconfigurable receiver channelizer. We estimate the memory requirement for implementing the system in an FPGA. The implementation delay is estimated in terms of number of samples. The thesis is organized in five chapters. Chapter 1 gives a brief introduction about the WiMAX system and different existing channelization architecture followed by the outline of the proposed receiver channelizer. In chapter 2, we analyze the proposed receiver channelizer for WiMAX BS and evaluate its computational requirements. Chapter 3 outlines the procedure to generate the WiMAX test signal and specification of the all the filters used in the system. It also lists the simulation parameters and records the results of the simulation. Chapter 4 presents the details of a possible FPGA implementation. We present the concluding remarks and future research directions in the final chapter.
16

Principy zabezpečení bezdrátových standardů / Principles of the Wireless Standards Security

Vokál, Martin January 2007 (has links)
Computer networks are in the scope of the IEEE organization normalized by the 802 board which currently comprises six working groups for wireless communications. IEEE 802.11 for wireless local area networks, IEEE  802.15 for wireless personal area networks, IEEE 802.16 for wireless metropolitan area networks, IEEE 802.20 for mobile broadband wireless access, IEEE 802.21 for media independent handover and IEEE 802.22 for wireless regional area networks. This master's thesis focuses on a security analysis of particular standards, describes threats, vulnerabilities, current security measures and mutually compares wireless specifications from a security point of view. The conclusion is devoted to overall evaluation of the project, to its contributions, possible enhancements and continuation in the form of consequential studies.

Page generated in 0.0617 seconds