• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Serotonin neurons maintain central mechanisms regulating metabolic homeostasis and are vital to thermogenic activation

McGlashon, Jacob 01 January 2016 (has links)
Thermogenic brown and beige adipocytes convert chemical energy to heat by metabolizing glucose and lipids via uncoupling protein 1 (Ucp1), a process known as non-shivering thermogenesis. Serotonin (5-HT) neurons in the ventral medulla are known to regulate sympathetic efferent neurons in the intermediolateral nucleus (IML) necessary to maintain brown adipose tissue (BAT) activity. Previous studies show that mice lacking central 5-HT neurons are incapable of maintaining body temperature in cold, ambient conditions. Due to this direct linkage between 5-HT and thermoregulation, we hypothesized that central 5-HT neurons may be vital to the regulation of brown and beige adipocyte activity. Given that BAT consumes large amounts of substrate when active, we also hypothesized that inactivation of BAT due to deletion of the regulatory neural circuitry (5-HT neurons) would cause metabolic dysregulation. To test this, we generated mice in which the human diphtheria toxin (DT) receptor was selectively expressed in central 5-HT neurons under control of a Pet-1 promoter. Pet-1 is a transcription factor selectively located in mature, central 5-HT neurons. Coincidentally, some cells within pancreatic islets also express Pet-1, and contain adequate machinery to produce, release, and uptake 5-HT. Systemic treatment with DT eliminated 5-HT neurons and caused loss of thermoregulation, BAT steatosis, and a >50% decrease in Ucp1 expression in BAT and beige fat, indicative of reduced thermal production. In parallel, blood glucose increased 3.5-fold, free fatty acids 13.4-fold and triglycerides 6.5-fold. Intracerebroventricular (ICV) treatment with 1/30th the systemic dose of DT induced an even greater thermoregulatory impairment. The metabolic deficits following systemic DT treatment indicate that central 5-HT neurons are essential for proper metabolic regulation. However, such high levels of glucose and lipids also indicate failure of the pancreatic endocrine program following systemic treatment, likely due to moderate destruction of β-cells expressing Pet-1 and the DT receptor. Because ICV treatment caused even greater thermoregulatory and metabolic deficits, where little, if any, of the toxin would spread systemically, central 5-HT neurons are clearly essential for normal central regulation of metabolism. Interestingly, similar BAT and beige fat defects occurred in Lmx1bf/f/p mice, in which 5-HT neurons fail to develop in utero. Assessment of systemically treated animals using a euglycemic/hyperinsulinemic clamp showed extensive fasting hyperglycemia and systemic insulin resistance, coinciding with reduced glucose uptake in skeletal muscle and BAT. The hyperinsulinemic clamp failed to suppress hepatic glucose and fatty acid production, leading to the conclusion that loss of central 5-HT neurons disrupts central hepatic regulation. In attempts to induce BAT thermogenesis and metabolism, we optogenetically stimulated 5-HT neurons in the rostral raphe pallidus and measured BAT and body temperature along with blood glucose. Unfortunately, these stimulations were incapable of increasing BAT temperature and lowering blood glucose, perhaps limiting therapeutic potential of these 5-HT neurons. We conclude that 5-HT neurons are major players in central regulation of metabolic homeostasis, in part through recruitment and activation of brown and beige adipocytes and hepatic substrate production. Data also suggest that 5-HT neurons regulate glucose homeostasis via undefined neural mechanisms independently of BAT activity and pancreatic insulin secretion. Cumulative data on central 5-HT neurons indicate they are master regulators of whole-body metabolism.
2

Exploring the link between adipose tissue, obesity and age-related macular degeneration

Diaz Marin, Roberto 08 1900 (has links)
L’obésité est en croissance rapide à l’échelle mondiale et représente un facteur de risque important pour plusieurs pathologies, dont la dégénérescence maculaire liée à l’âge (DMLA). Dans l’obésité, le tissu adipeux blanc (WAT) subi un remodelage pathologique caractérisé par le recrutement de macrophages pro-inflammatoires facilitant l’établissement de l’inflammation stérile systémique. Contrairement au WAT, les tissus adipeux brun (BAT) et beige (BgAT) participent à la thermogénèse, un processus qui libère de la chaleur en métabolisant les lipides. En raison de leurs potentiels effets physiologiques bénéfiques, le recrutement d’adipocytes et l’activation de ces types spécifiques de tissu adipeux (AT) ont fait l’objet de multiples recherches et débats. Malgré les avancées considérables dans le domaine, les mécanismes impliqués dans l’activation du BAT et du BgAT ainsi que les mécanismes impliqués dans le développement de l’obésité et leur contribution à des maladies comme la DMLA, restent mal définis. Dans un premier temps, nous avons développé le protocole RELi pour permettre une extraction et une quantification fiable des protéines du AT murin saturé en lipides. Notre protocole élimine les lipides contaminants en excès, réduit la variabilité du chargement de protéines pour le western blot et l’usage de gènes de ménage standards (Article #1). Ensuite, nous avons étudié l’inflammation au niveau du BAT dans un modèle d’obésité induite par l’alimentation. La délétion de la Neuropiline 1 (NRP1) chez les macrophages résidents du tissu adipeux (ATMs) a provoqué une diminution des densités de la vasculature et de l’innervation. De plus ces souris sont devenues plus sensibles à l’exposition au froid suggérant un rôle des ATMs-Nrp1+ dans la régulation de l’homéostasie du BAT et de la température corporelle (Article #2). Finalement, nous avons exploré l’axe BgAT-DMLA; plus spécifiquement son impact potentiel sur la néovascularization choroïdienne (CNV) en utilisant des approches in vivo et in vitro. Nous avons démontré que la délétion génétique de PRD1-BF1-RIZ1 homologous domain containing 16 (PRDM16), un gène impliqué dans la thermogénèse, conduit à une réduction de la CNV, et que la réintroduction d’AT-PRDM16+ exacerbe la formation de CNV pathologique. Le traitement d’explants de choroïde avec du milieu conditionné par des adipocytes-PRDM16+ augmente la croissance des vaisseaux sanguins. Ensemble, les données suggèrent un rôle sécrétoire potentiel pour le BgAT-PRDM16+ capable d’influencer la formation distale de CNV qui pourrait être pertinente pour la DMLA (Article #3). Les travaux présentés dans cette thèse établissent les bases d’un protocole permettant l’obtention de résultats reproductibles dans l’étude du AT, soulignent l’importance des ATMs- Nrp1+ dans la régulation de l’homéostasie du BAT et explorent pour la première fois l’implication du BgAT-PRDM16+ chez la DMLA neovasculaire. Ce travail établit les bases de la compréhension des mécanismes moléculaires reliant la régulation du AT thermogénique et les pathologies caractérisées par un excès de gras. Ce travail souligne également l’importance d’évaluer l’activation du BgAT chez les patients atteints de la DMLA. / Obesity is rapidly growing worldwide and represents a significant risk factor to several pathologies, including age-related macular degeneration (AMD). In obesity, the white adipose tissue (WAT) undergoes a strong remodeling characterized by the recruitment of pro- inflammatory macrophages, facilitating low-grade chronic inflammation. Unlike WAT, brown (BAT) and beige (BgAT) adipose tissues participate in thermogenesis, a process that releases heat by metabolizing lipids. Due to the likely beneficial physiological effects of BAT and BgAT, the recruitment of adipocytes and activation of these specific types of adipose tissue (AT) has been the subject of much research and debate. Despite considerable advances in the field, the mechanisms involved in BAT- and BgAT-activation as well as mechanisms involved in the development of obesity and their contribution to diseases such as AMD, remain ill-defined. First, we developed the RELi protocol to allow a reliable extraction and quantification of proteins from murine AT saturated with lipids. Our protocol eliminates excess contaminating lipids, reduces the variability of protein loading in Western blot and stabilizes expression of housekeeping genes (Article #1). Next, we investigated the inflammatory component of BAT in a diet-induced obesity model. The deletion of NRP1 in resident adipose tissue macrophages (ATMs) led to the expansion of the BAT and affected the densities of the vasculature and the innervation. Moreover, these mice became more sensitive to cold exposure, suggesting a role of ATMs-Nrp1+ in the regulation of BAT homeostasis and body temperature (Article #2). Lastly, we explored the axis of BgAT and AMD; more specifically, its potential impact on choroidal neovascularization (CNV) using in vivo and in vitro approaches. We demonstrated that the genetic deletion in BgAT of PRD1-BF1-RIZ1 homologous domain containing 16 (PRDM16), a gene involved in thermogenesis, leads to a reduction of CNV, and that the reintroduction of BgAT-PRDM16+ via AT transplantation exacerbates the formation of pathological CNV. Treatment of choroid explants with PRDM16+-adipocyte-conditioned medium augmented blood vessel growth. Altogether, the data suggest a potential secretory role for BgAT-PRDM16+ to influence distal CNV formation that could be relevant to AMD (Article #3). The work presented in this thesis establishes the basis of a protocol allowing reproducible results in the study of AT, underlines the importance of ATMs-Nrp1+ in the regulation of BAT homeostasis and explores, for the first time, the involvement of BgAT-PRDM16+ in neovascular AMD. This work sets the basis for the understanding of the molecular mechanisms linking the regulation of thermogenic AT and pathologies characterized by an excess of fat. This work also highlights the importance of assessing the activation of BgAT in patients with AMD.

Page generated in 0.0869 seconds