• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Serotonin neurons maintain central mechanisms regulating metabolic homeostasis and are vital to thermogenic activation

McGlashon, Jacob 01 January 2016 (has links)
Thermogenic brown and beige adipocytes convert chemical energy to heat by metabolizing glucose and lipids via uncoupling protein 1 (Ucp1), a process known as non-shivering thermogenesis. Serotonin (5-HT) neurons in the ventral medulla are known to regulate sympathetic efferent neurons in the intermediolateral nucleus (IML) necessary to maintain brown adipose tissue (BAT) activity. Previous studies show that mice lacking central 5-HT neurons are incapable of maintaining body temperature in cold, ambient conditions. Due to this direct linkage between 5-HT and thermoregulation, we hypothesized that central 5-HT neurons may be vital to the regulation of brown and beige adipocyte activity. Given that BAT consumes large amounts of substrate when active, we also hypothesized that inactivation of BAT due to deletion of the regulatory neural circuitry (5-HT neurons) would cause metabolic dysregulation. To test this, we generated mice in which the human diphtheria toxin (DT) receptor was selectively expressed in central 5-HT neurons under control of a Pet-1 promoter. Pet-1 is a transcription factor selectively located in mature, central 5-HT neurons. Coincidentally, some cells within pancreatic islets also express Pet-1, and contain adequate machinery to produce, release, and uptake 5-HT. Systemic treatment with DT eliminated 5-HT neurons and caused loss of thermoregulation, BAT steatosis, and a >50% decrease in Ucp1 expression in BAT and beige fat, indicative of reduced thermal production. In parallel, blood glucose increased 3.5-fold, free fatty acids 13.4-fold and triglycerides 6.5-fold. Intracerebroventricular (ICV) treatment with 1/30th the systemic dose of DT induced an even greater thermoregulatory impairment. The metabolic deficits following systemic DT treatment indicate that central 5-HT neurons are essential for proper metabolic regulation. However, such high levels of glucose and lipids also indicate failure of the pancreatic endocrine program following systemic treatment, likely due to moderate destruction of β-cells expressing Pet-1 and the DT receptor. Because ICV treatment caused even greater thermoregulatory and metabolic deficits, where little, if any, of the toxin would spread systemically, central 5-HT neurons are clearly essential for normal central regulation of metabolism. Interestingly, similar BAT and beige fat defects occurred in Lmx1bf/f/p mice, in which 5-HT neurons fail to develop in utero. Assessment of systemically treated animals using a euglycemic/hyperinsulinemic clamp showed extensive fasting hyperglycemia and systemic insulin resistance, coinciding with reduced glucose uptake in skeletal muscle and BAT. The hyperinsulinemic clamp failed to suppress hepatic glucose and fatty acid production, leading to the conclusion that loss of central 5-HT neurons disrupts central hepatic regulation. In attempts to induce BAT thermogenesis and metabolism, we optogenetically stimulated 5-HT neurons in the rostral raphe pallidus and measured BAT and body temperature along with blood glucose. Unfortunately, these stimulations were incapable of increasing BAT temperature and lowering blood glucose, perhaps limiting therapeutic potential of these 5-HT neurons. We conclude that 5-HT neurons are major players in central regulation of metabolic homeostasis, in part through recruitment and activation of brown and beige adipocytes and hepatic substrate production. Data also suggest that 5-HT neurons regulate glucose homeostasis via undefined neural mechanisms independently of BAT activity and pancreatic insulin secretion. Cumulative data on central 5-HT neurons indicate they are master regulators of whole-body metabolism.
2

Novel functions of drosophila TRPA channels pain and pyx in gravity sensing and the DEG/ENaC channel ppk11 in metabolic homeostasis

Sun, Yishan 01 December 2009 (has links)
My thesis research comprises two projects looking into physiological functions of Drosophila ion channels: first, contribution of several T ransient R eceptor P otential (TRP) channels to gravity sensing; second, regulation of metabolic homeostasis by a D egenerin/ E pithelial Na + C hannel (DEG/ENaC). Many animal species sense gravity for spatial orientation. In humans recurrent vertigo and dizziness are often attributable to impairment of gravity sensing in the vestibular organs. However, the molecular bases for gravity sensing and its disruption in vestibular disease remain uncertain. Here I studied gravity sensing in the model organism Drosophila melanogaster, with a combination of genetic, behavioral and electrophysiological methods. My results show that gravity sensing requires Johnston’s organ, a mechanosensory structure located in the antenna that also mediates hearing. Johnston’s organ neurons fire action potentials in a phasic manner in response to body rotations in the gravitational field. Furthermore, gravity sensing and hearing require different TRP channels with distinct anatomical localizations, implying separate neural mechanisms underlying gravity sensing and hearing. These findings set the stage for understanding how TRP channels contribute to the sensory transduction of gravity. Drosophila melanogaster has over 20 genes belonging to the DEG/ENaC family, which are collectively referred to as pickpockets (ppks) . Genetic analyses have implicated ppk genes in salt taste, tracheal liquid clearance, pheromone detection, and developmental timing. These results, together with the conserved presence of DEG/ENaC genes through evolution, suggest that further studies on fly ppk genes may help gain insights to a number of physiological processes. Here I report that the ppk11 gene regulates metabolic homeostasis. A ppk11 enhancer/promoter fragment labels the fat body, the lipid storage organ of Drosophila. ppk11 mutants are lean — they store less triacylglyceride (TAG), possess smaller lipid droplets and are sensitive to starvation compared to wild–type flies. ppk11 mutants also show signs of enhanced insulin sensitivity — they store more glycogen and maintain a lower level of circulating carbohydrate (trehalose). Moreover, the mutants have extended life span, suggesting ppk11–dependent activities of the fat body have systematic and long–term effects on the fly body. Understanding the cellular function of ppk11 may offer new insights into mechanisms that regulate metabolic homeostasis.
3

Exercise, Obesity and CNS Control of Metabolic Homeostasis: A Review

Smith, John K. 17 May 2018 (has links)
This review details the manner in which the central nervous system regulates metabolic homeostasis in normal weight and obese rodents and humans. It includes a review of the homeostatic contributions of neurons located in the hypothalamus, the midbrain and limbic structures, the pons and the medullary area postrema, nucleus tractus solitarius, and vagus nucleus, and details how these brain regions respond to circulating levels of orexigenic hormones, such as ghrelin, and anorexigenic hormones, such as glucagon-like peptide 1 and leptin. It provides an insight as to how high intensity exercise may improve homeostatic control in overweight and obese subjects. Finally, it provides suggestions as to how further progress can be made in controlling the current pandemic of obesity and diabetes.
4

Krüppel-Like Factor 15 Orchestrates Systemic Metabolic Homeostasis

Fan, Liyan 01 September 2021 (has links)
No description available.
5

Rôle des polyphénols à effets prébiotiques dans la prévention du syndrome métabolique : mécanismes d'action au niveau cellulaire et animal

Koudoufio, Djatougbévi Mireille 01 1900 (has links)
Le rôle crucial du tractus gastrointestinal dans la pathogenèse et la pathophysiologie des troubles cardiométaboliques (TCM) et du syndrome métabolique (SM) est actuellement bien établi. Plusieurs facteurs, incluant le stress oxydatif (SOx), l'inflammation et la résistance à l'insuline (RI), perturbent l'homéostasie intestinale et causent des TCM. Les polyphénols (PP) ont des effets biologiques bénéfiques dans la prévention de pathologies métaboliques. Cependant, leurs mécanismes d'actions, surtout au niveau de l'axe intestin-foie, ne sont pas bien compris. Par ailleurs, malgré les nombreuses études sur les effets biologiques et la biodisponibilité des PP, il existe encore des zones d’ombres concernant les interactions entre le microbiote intestinal et les PP et les conséquences subséquentes sur la santé intestinale et métabolique. Dans ce travail de recherche, nous favorisons l’axiome selon lequel les PP, notamment ceux de grande taille moléculaire tels que les proanthocyanidines (PACs), pourraient être utile pour combattre les maladies métaboliques grâce à leurs actions antioxydante et anti-inflammatoire. Toutefois, ces actions précitées des PACs dépendraient d’une régulation en amont du microbiote intestinal. L’objectif central consiste à démontrer les effets bénéfiques des PACs dans la prévention des dérèglements métaboliques dans deux modèles distincts, l’un cellulaire et l’autre animal et d’en étudier les mécanismes. Les effets des PACs sur la RI, les dérangements métaboliques intestinaux grâce à la production de métabolites ont été étudiés. Dans une première étape, nous avons étudié les mécanismes d’actions des PACs et de l’un de leurs métabolites majeurs, le 4,5-dihydroxyphenyl valerolactone (DHPVL), dans la prévention des maladies métaboliques et dans le maintien de l’homéostasie intestinale en utilisant la lignée cellulaire intestinale Caco-2/15. Ces cellules constituent un outil de choix pour l’investigation du SOx, la défense antioxydante et l’inflammation en relation directe avec nos objectifs. Les résultats suggèrent que la capacité des PACs à augmenter la défense antioxydante et anti-inflammatoire et à améliorer l’homéostasie intestinale passeraient en partie probablement par leurs métabolites microbiens. Dans une deuxième étape, en utilisant le modèle murin C57BL6, nous avons déterminé l’impact des PACs sur l’homéostasie métabolique intestinale et hépatique, via l’atténuation du SOx et l’inflammation, le maintien de l’intégrité de la barrière intestinale, la prévention de l’endotoxémie métabolique et les modifications du profil lipidique et de la fonction du microbiote intestinal. Cette partie a évalué les aspects préventifs et thérapeutiques des PACs en spécifiant leurs bénéfices biologiques et voies mécanistiques dans des organes métaboliques clés. Pour étudier ces mécanismes et les comprendre, nous avons utilisé le modèle dysmétabolique de souris C57BL6 soumises à une diète riche en lipides et en sucrose (HFHS), servant à développer le SM et les complications cardio-métaboliques afin d’examiner l’action des PACs. Le développement de l’obésité, de la RI ainsi que la survenue d’autres altérations métaboliques ont été prévenus par l’administration de PACs. Les résultats de cette thèse permettent une meilleure compréhension des mécanismes d’actions qui sous-tendent les effets préventifs et thérapeutiques des PACs dans les désordres métaboliques, en particulier dans l’axe intestin-foie. / The crucial role of the gastrointestinal tract in the pathogenesis and pathophysiology of cardiometabolic disorders (CMD) and metabolic syndrome (MetS) is currently recognized. Several factors, including oxidative stress (OxS), inflammation and insulin resistance (IR), disrupt intestinal homeostasis and cause CMD. Polyphenols (PP) have beneficial biological effects in the prevention of metabolic pathologies. However, their mechanisms of action, especially in the gut-liver axis, are not well understood. Moreover, despite numerous studies on the biological effects and bioavailability of PP, there are still grey areas concerning the interactions between the intestinal microbiota and PP and the subsequent consequences for intestinal and metabolic health. In this research work, we promote the axiom that PP, particularly those of large molecular size such as proanthocyanidins (PACs), could be useful in combating metabolic diseases thanks to their antioxidant and anti-inflammatory actions. However, the aforementioned actions of PACs would depend on upstream regulation of the intestinal microbiota. The central objective is to demonstrate the beneficial effects of PACs in preventing metabolic disorders in two distinct models, one cellular and the other animal, and to study the mechanisms involved. The effects of PACs on IR and intestinal metabolic disturbances through metabolite production were studied. In a first step, we investigated the mechanisms of action of PACs and one of their major metabolites, 4,5-dihydroxyphenyl valerolactone (DHPVL), in the prevention of metabolic diseases and in the maintenance of intestinal homeostasis using the Caco-2/15 intestinal cell line. These cells are a tool of choice for investigating OxS, antioxidant defense and inflammation in direct relation to our objectives. The results suggest that the ability of PACs to enhance antioxidant and anti-inflammatory defense and improve intestinal homeostasis is probably partly mediated by their microbial metabolites. In a second step, using the C57BL6 mouse model, we determined the impact of PACs on intestinal and hepatic metabolic homeostasis, via attenuation of OxS and inflammation, maintenance of intestinal barrier integrity, prevention of metabolic endotoxemia and changes in lipid profile and gut microbiota function. This section assessed the preventive and therapeutic aspects of PACs, specifying their biological benefits and mechanistic pathways in key metabolic organs. To investigate and understand these mechanisms, we used the dysmetabolic model of C57BL6 mice subjected to a high-fat, high-sucrose diet (HFHS), used to develop MetS and cardio-metabolic complications to examine the action of PACs. The development of obesity, IR and other metabolic alterations was prevented by the administration of PACs. The results of this thesis provide a better understanding of the mechanisms of action underlying the preventive and therapeutic effects of PACs in metabolic disorders, particularly in the intestine-liver axis.
6

Sociocultural Risk Factors of Non-Insulin Diabetes Mellitus Among Middle Class African Americans in Central Ohio

Robinson, Jacquelyn Patricia Price 19 March 2003 (has links)
No description available.

Page generated in 0.0728 seconds