• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 199
  • 37
  • 36
  • 10
  • 9
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 350
  • 350
  • 105
  • 91
  • 57
  • 52
  • 51
  • 43
  • 39
  • 39
  • 37
  • 35
  • 35
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Coarse Graining Nonisothermal Microswimmer Suspensions

Auschra, Sven, Chakraborty, Dipanjan, Falasco, Gianmaria, Pfaller, Richard, Kroy, Klaus 30 March 2023 (has links)
We investigate coarse-grained models of suspended self-thermophoretic microswimmers. Upon heating, the Janus spheres, with hemispheres made of different materials, induce a heterogeneous local solvent temperature that causes the self-phoretic particle propulsion. Starting from molecular dynamics simulations that schematically resolve the molecular composition of the solvent and the microswimmer, we verify the coarse-grained description of the fluid in terms of a local molecular temperature field, and its role for the particle’s thermophoretic self-propulsion and hot Brownian motion. The latter is governed by effective nonequilibrium temperatures, which are measured from simulations by confining the particle position and orientation. They are theoretically shown to remain relevant for any further spatial coarse-graining towards a hydrodynamic description of the entire suspension as a homogeneous complex fluid.
202

Towards Measuring the Maxwell–Boltzmann Distribution of a Single Heated Particle

Su, Xiaoya, Fischer, Alexander, Cichos, Frank 30 March 2023 (has links)
The Maxwell–Boltzmann distribution is a hallmark of statistical physics in thermodynamic equilibrium linking the probability density of a particle’s kinetic energies to the temperature of the system that also determines its configurational fluctuations. This unique relation is lost for Hot Brownian Motion, e.g., when the Brownian particle is constantly heated to create an inhomogeneous temperature in the surrounding liquid. While the fluctuations of the particle in this case can be described with an effective temperature, it is not unique for all degrees of freedom and suggested to be different at different timescales. In this work, we report on our progress to measure the effective temperature of Hot Brownian Motion in the ballistic regime. We have constructed an optical setup to measure the displacement of a heated Brownian particle with a temporal resolution of 10 ns giving a corresponding spatial resolution of about 23 pm for a 0.92 μm PMMA particle in water. Using a goldcoated polystyrene (AuPS) particle of 2.15 μm diameter we determine the mean squared displacement of the particle over more than six orders of magnitude in time. Our data recovers the trends for the effective temperature at long timescales, yet shows also clear effects in the region of hydrodynamic long time tails.
203

A multimodal deep learning framework using local feature representations for face recognition

Al-Waisy, Alaa S., Qahwaji, Rami S.R., Ipson, Stanley S., Al-Fahdawi, Shumoos 04 September 2017 (has links)
Yes / The most recent face recognition systems are mainly dependent on feature representations obtained using either local handcrafted-descriptors, such as local binary patterns (LBP), or use a deep learning approach, such as deep belief network (DBN). However, the former usually suffers from the wide variations in face images, while the latter usually discards the local facial features, which are proven to be important for face recognition. In this paper, a novel framework based on merging the advantages of the local handcrafted feature descriptors with the DBN is proposed to address the face recognition problem in unconstrained conditions. Firstly, a novel multimodal local feature extraction approach based on merging the advantages of the Curvelet transform with Fractal dimension is proposed and termed the Curvelet–Fractal approach. The main motivation of this approach is that theCurvelet transform, a newanisotropic and multidirectional transform, can efficiently represent themain structure of the face (e.g., edges and curves), while the Fractal dimension is one of the most powerful texture descriptors for face images. Secondly, a novel framework is proposed, termed the multimodal deep face recognition (MDFR)framework, to add feature representations by training aDBNon top of the local feature representations instead of the pixel intensity representations. We demonstrate that representations acquired by the proposed MDFR framework are complementary to those acquired by the Curvelet–Fractal approach. Finally, the performance of the proposed approaches has been evaluated by conducting a number of extensive experiments on four large-scale face datasets: the SDUMLA-HMT, FERET, CAS-PEAL-R1, and LFW databases. The results obtained from the proposed approaches outperform other state-of-the-art of approaches (e.g., LBP, DBN, WPCA) by achieving new state-of-the-art results on all the employed datasets.
204

A Robust Face Recognition System Based on Curvelet and Fractal Dimension Transforms

Al-Waisy, Alaa S., Qahwaji, Rami S.R., Ipson, Stanley S., Al-Fahdawi, Shumoos January 2015 (has links)
Yes / n this paper, a powerful face recognition system for authentication and identification tasks is presented and a new facial feature extraction approach is proposed. A novel feature extraction method based on combining the characteristics of the Curvelet transform and Fractal dimension transform is proposed. The proposed system consists of four stages. Firstly, a simple preprocessing algorithm based on a sigmoid function is applied to standardize the intensity dynamic range in the input image. Secondly, a face detection stage based on the Viola-Jones algorithm is used for detecting the face region in the input image. After that, the feature extraction stage using a combination of the Digital Curvelet via wrapping transform and a Fractal Dimension transform is implemented. Finally, the K-Nearest Neighbor (K-NN) and Correlation Coefficient (CC) Classifiers are used in the recognition task. Lastly, the performance of the proposed approach has been tested by carrying out a number of experiments on three well-known datasets with high diversity in the facial expressions: SDUMLA-HMT, Faces96 and UMIST datasets. All the experiments conducted indicate the robustness and the effectiveness of the proposed approach for both authentication and identification tasks compared to other established approaches.
205

Excluded-volume effects in stochastic models of diffusion

Bruna, Maria January 2012 (has links)
Stochastic models describing how interacting individuals give rise to collective behaviour have become a widely used tool across disciplines—ranging from biology to physics to social sciences. Continuum population-level models based on partial differential equations for the population density can be a very useful tool (when, for large systems, particle-based models become computationally intractable), but the challenge is to predict the correct macroscopic description of the key attributes at the particle level (such as interactions between individuals and evolution rules). In this thesis we consider the simple class of models consisting of diffusive particles with short-range interactions. It is relevant to many applications, such as colloidal systems and granular gases, and also for more complex systems such as diffusion through ion channels, biological cell populations and animal swarms. To derive the macroscopic model of such systems, previous studies have used ad hoc closure approximations, often generating errors. Instead, we provide a new systematic method based on matched asymptotic expansions to establish the link between the individual- and the population-level models. We begin by deriving the population-level model of a system of identical Brownian hard spheres. The result is a nonlinear diffusion equation for the one-particle density function with excluded-volume effects enhancing the overall collective diffusion rate. We then expand this core problem in several directions. First, for a system with two types of particles (two species) we obtain a nonlinear cross-diffusion model. This model captures both alternative notions of diffusion, the collective diffusion and the self-diffusion, and can be used to study diffusion through obstacles. Second, we study the diffusion of finite-size particles through confined domains such as a narrow channel or a Hele–Shaw cell. In this case the macroscopic model depends on a confinement parameter and interpolates between severe confinement (e.g., a single- file diffusion in the narrow channel case) and an unconfined situation. Finally, the analysis for diffusive soft spheres, particles with soft-core repulsive potentials, yields an interaction-dependent non-linear term in the diffusion equation.
206

Chaos multiplicatif Gaussien, matrices aléatoires et applications / The theory of Gaussian multiplicative chaos

Allez, Romain 23 November 2012 (has links)
Dans ce travail, nous nous sommes intéressés d'une part à la théorie du chaos multiplicatif Gaussien introduite par Kahane en 1985 et d'autre part à la théorie des matrices aléatoires dont les pionniers sont Wigner, Wishart et Dyson. La première partie de ce manuscrit contient une brève introduction à ces deux théories ainsi que les contributions personnelles de ce manuscrit expliquées rapidement. Les parties suivantes contiennent les textes des articles publiés [1], [2], [3], [4], [5] et pré-publiés [6], [7], [8] sur ces résultats dans lesquels le lecteur pourra trouver des développements plus détaillés / In this thesis, we are interested on the one hand in the theory of Gaussian multiplicative chaos introduced by Kahane in 1985 and on the other hand in random matrix theory whose pioneers are Wigner, Wishart and Dyson. The first part of this manuscript constitutes a brief introduction to those two theories and also contains the personal contributions of this work rapidly explained. The following parts contain the texts of the published articles [1], [2], [3], [4], [5] and pre-prints [6], [7], [8] on those results where the reader can find more detailed developments
207

Interpolation et comparaison de certains processus stochastiques / Stochastic interpolation and comparison of some stochastic processes

Laquerrière, Benjamin 10 May 2012 (has links)
Dans la première partie de cette thèse, on présente des inégalités de concentration convexe pour des intégrales stochastiques. Ces résultats sont obtenus par calcul stochastique e tpar calcul de Malliavin forward/backward. On présente également des inégalités de déviation pour les exponentielles martingales à saut.Dans une deuxième partie on présente des théorèmes limites pour le conditionnement du mouvement brownien. / In the first part of this thesis, we present some convex concentration inequalities for stochastic integrals. These results are obtained by forward/backward stochastic calculus combined with Malliavin calculus. We also present deviation inequalities for exponentialjump-diffusion.In the second part, we present some limit theorems for the conditionning of Brownian motion.
208

Stínové ceny a řízení portfolia s proporcionálními transakčními náklady / Shadow prices and portfolio management with proportional transaction costs

Klůjová, Jana January 2013 (has links)
The diploma thesis describes portfolio management with proportional transaction costs. The main aim is to describe using of shadow prices to find the optimal Markov policies keeping the proportion of the investor's wealth invested in the risky asset within the corresponding interval in order to maximize the long run geometric growth rate. On the real market, the investor must pay transaction costs when he buys/sells shares. In the diploma thesis we transform these prices into the shadow price; when trading in the shadow price there are no transaction costs. The solution itself is based on Itô formula and the martingal theory. The prices of shares are modeled as geometric Brownian motion. Powered by TCPDF (www.tcpdf.org)
209

Oceňování bariérových opcí / Barrier options pricing

Macháček, Adam January 2013 (has links)
In the presented thesis we study three methods of pricing European currency barrier options. With help of these methods we value selected barrier options with underlying asset EUR/CZK. In the first chapter we introduce the basic definitions from the world of financial derivatives and we describe our data. In the second chapter we deal with the classical model based on geometric Brownian motion of underlying asset and we prove a theorem of valuating Up-In-barrier option in this model. In the third chapter we introduce a model with stochastic volatility, the Heston model. We calibrate this model to market data and we use it to value our barrier options. In the last chapter we describe a jump diffusion model. Again we calibrate this jump diffusion model to market data and price our barrier options. The aim of this thesis is to decribe and to compare different methods of valuating barrier options. 1
210

Stochastické integrály řízené isonormálními gaussovskými procesy a aplikace / Stochastic Integrals Driven by Isonormal Gaussian Processes and Applications

Čoupek, Petr January 2013 (has links)
Stochastic Integrals Driven by Isonormal Gaussian Processes and Applications Master Thesis - Petr Čoupek Abstract In this thesis, we introduce a stochastic integral of deterministic Hilbert space valued functions driven by a Gaussian process of the Volterra form βt = t 0 K(t, s)dWs, where W is a Brownian motion and K is a square integrable kernel. Such processes generalize the fractional Brownian motion BH of Hurst parameter H ∈ (0, 1). Two sets of conditions on the kernel K are introduced, the singular case and the regular case, and, in particular, the regular case is studied. The main result is that the space H of β-integrable functions can be, in the strictly regular case, embedded in L 2 1+2α ([0, T]; V ) which corresponds to the space L 1 H ([0, T]) for the fractional Brownian mo- tion. Further, the cylindrical Gaussian Volterra process is introduced and a stochastic integral of deterministic operator-valued functions, driven by this process, is defined. These results are used in the theory of stochastic differential equations (SDE), in particular, measurability of a mild solution of a given SDE is proven.

Page generated in 0.0738 seconds