• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pore formation from bubble entrapment by a solidification front and pore formation in solid

Hsiao, Shih-Yen 18 August 2012 (has links)
In this dissertation¡Atwo topics in microbubble systems are investigated¡G1) Pore Formation from Bubble Entrapment by a Solidification Front¡F2) Pore formation in Solid¡C In the first study¡Amechanism of the pore shape in solid resulted from a tiny bubble captured by a solidification front is geometrically and generally investigated¡CPore formation and its shape in solid are one of the most critical factors affecting properties¡Amicrostructure¡Aand stresses in materials¡CFor simplicity without loss of generality, the tiny bubble beyond the solidification front is considered to have a spherical cap in this work¡CIntroducing a geometrical analysis it is found that the contact angle of the bubble cap can be governed by the Abel¡¦s equation of the first kind in terms of displacement of the solidification front¡CThe pore can be elongated, expanded¡Ashrunk and closed¡Adepending on relative variation of the bubble growth rate and solidification rate¡CThe pore can be closed by imposing infinitesimal bubble growth rate-to-solidification rate ratio¡Aand a finite bubble growth-to-solidification rate ratio in order to produce a minimal bubble radius at the contact angle of ¡CA criterion intuitively accepted in the literature¡Astating that closure of a pore is attributed to a greater solidification rate than bubble growth rate¡Ais incorrect¡CThe predicted pore shape and contact angle agree with experimental observations¡CManipulating either bubble growth rate or solidification rate can control pore formation in solid¡C In second study¡Athe shapes of a growing or decaying bubble entrapped by a solidification front are predicted in this work¡CThe bubble results from supersaturation of a dissolved gas in the liquid ahead of the solidification front¡CPore formation and its shape in solid are one of the most critical factors affecting properties¡Amicrostructure, and stresses in materials¡CIn this study¡Athe bubble and pore shapes entrapped in solid can be described by a three-dimensional phase diagram¡Aobtained from perturbation solutions of Young-Laplace equation governing the tiny bubble shape in the literature¡CThe predicted growth and entrapment of a microbubble as a pore in solid are found to agree with experimental data¡CThis work thus provides a realistic prediction of the general growth of the pore shape as a function of different working parameters¡C
2

TOPFLOW-Experiments on Direct Condensation and Bubble Entrainment

Seidel, Tobias, Lucas, Dirk, Beyer, Matthias 16 February 2016 (has links) (PDF)
Direct Contact Condensation between steam and water as well as bubble entrainment below the water surface play an important role in different accident scenarios for light water reactors. One example is the emergency core cooling water injection into a two-phase mixture. It has to be considered for example to evaluate potential pressurized thermal shock phenomena. This report documents experiments conducted in flat basin inside the TOPFLOW pressure chamber aiming on the generation of a database useful for CFD model development and validation. It comprises 3 different setups: condensation at a stratified flow of sub-cooled water, condensation at a sub-cooled water jet and a combination of both phenomena with steam bubble entrainment. The documentation includes all details on the experimental set up, on experimental conditions (experimental matrices), on the conduction of the experiments, on measuring techniques used and on data evaluation procedures. In addition, selected results are presented.
3

Aeration due to Breaking waves

Cummings, Peter D. Unknown Date (has links)
The exchange of mass (gases, water & salts) between the oceans and the atmosphere is vital to the maintenance of life on earth. At high wind velocities most of this exchange is attributable to breaking wave entrained air bubbles. A vertical supported planar plunging jet experiment was used to model the entrainment process. The bubbles were detected with a dual tip conductivity probe and a video camera. At plunging jet velocities below 1.0m/s there is no bubble entrainment. This inception velocity appears to have a Froude and Weber number scaling for large rough turbulent jets. At jet velocities up to 5m/s air appeared to be entrained via intermittent air cavities at the jet - plunge pool intersection. The entrained air packets subsequently break in the two phase free shear layer under the entrainment point. At higher jet velocities there may be partial penetration of the aerated jet surface via pulsating induction cavities plus air entrainment via jet self aeration before impact. Plunging jet air flow data displays the different types of entrainment mechanisms. Mono-phase diffusion models can be successfully adapted to describe the shear layer developing zone. The diffusion of the air bubbles is approximately a Gaussian self similar process. The mean bubble velocity profiles can be modelled using the Goertler Error function or Hyperbolic Tangent models. The bubble spectra is approximately Lognormal with a geometric mean diameter of 1.0-2.0mm for a range of jet velocities. A bubble Weber number is found to model the maximum bubble size of approximately 10mm diameter. An original adaptation of the potential flow solution for the vortex sheet is shown to be a simple and reasonably accurate finite amplitude model for water surface gravity waves, especially in deep water. This model has some interesting features, such as both vertical and horizontal asymmetry and standing wave water profile modelling. A simple and possibly insightful model of wave growth due to the wind is introduced, using a constant sea surface Reynolds number U*.sqrt(L.F)/Gamma , where U* = wind friction velocity, L = wavelength, F = fetch, and Gamma = wave field vortex circulation per wavelength. The results may have application in the modelling of air - sea gas exchanges, predicting breaking wave forces on structures and the use of the planar plunging jet as an aeration device in industry.
4

TOPFLOW-Experiments on Direct Condensation and Bubble Entrainment

Seidel, Tobias, Lucas, Dirk, Beyer, Matthias January 2016 (has links)
Direct Contact Condensation between steam and water as well as bubble entrainment below the water surface play an important role in different accident scenarios for light water reactors. One example is the emergency core cooling water injection into a two-phase mixture. It has to be considered for example to evaluate potential pressurized thermal shock phenomena. This report documents experiments conducted in flat basin inside the TOPFLOW pressure chamber aiming on the generation of a database useful for CFD model development and validation. It comprises 3 different setups: condensation at a stratified flow of sub-cooled water, condensation at a sub-cooled water jet and a combination of both phenomena with steam bubble entrainment. The documentation includes all details on the experimental set up, on experimental conditions (experimental matrices), on the conduction of the experiments, on measuring techniques used and on data evaluation procedures. In addition, selected results are presented.
5

Experimental Investigation Of The Air-Water Flow Properties In The Cavity Zone Downstream A Chute Aerator

Wargsjö, Ebba, Hedehag Damberg, Albin January 2017 (has links)
Chute aerators are widely used in spillways to avoid cavitation damage. When the water flow passes the aerator, two jets form – upper and lower jet. The purpose of this thesis has been to study the effects from the aerator by conducting experiments in a model with a flow depth large enough to ensure that the upper and lower jet remain separated. This means that the effects from the self-aeration at the upper surface has no effect on the process in the lower jet, thus making it possible to quantify the effects from the aerator. This thesis has also provided information of the bubble formation in the lower jet to aid in the ongoing research at Sichuan University. The following questions were set up for this thesis: • What is cavitation and how is it harmful? • What is the working principle of an aerator? • How is air concentration and bubble frequency distributed in the flow? • How well do the experimental results coincide with theoretical calculations? • How are air bubbles formed and transported within the flow? The effects from the aerator have been quantified by measuring the air concentration and bubble frequency throughout the cavity zone. The model was modified and the velocity was varied between the experiments to study how different parameters effected the aeration. The results indicate that much air is being entrapped in the lower surface, but only a small amount of the entrapped air is being entrained into the flow and that the bubble frequency increases with both distance from the aerator and with an increased flow velocity. No difference in behaviour was noticed between the different modifications of the model. The bubble formation was studied by recording the flow with a high-speed camera. These recordings were used to obtain data about important parameters for the ongoing research at Sichuan University.

Page generated in 0.0898 seconds