• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 12
  • 9
  • 6
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 67
  • 12
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Projekt linky pro moření obilnin / Project of transport line for dressing corn

Klíma, Petr January 2009 (has links)
Subject of this work is a project of transport line for corn dressing. In the document component parts of the transport line are described. As the submitter asked, some existing devices were retained and supplied with missing parts. Some of the missing parts are bucket elevators which transport corn to the cleaner and dressing device. At the end of the transport line there is a frame for easing sack filling and a weighing device.
12

Flow analysis of melted urea in a perforated rotating bucket

Muhammad, A., Rahmanian, Nejat, Pendyala, R. 05 July 2021 (has links)
No / A comprehensive study of the internal flow field for the prilling application in a perforated rotating bucket has been carried out. Computational Fluid Dynamics (CFD) is used to investigate the flow field of urea melt inside the perforated rotating bucket. The bucket is mounted at the top of the prilling tower. In prilling process, urea melt is sprayed by the perforated rotating bucket to produce the urea droplets, which falls down due to gravity. These drops fall down through a cooling medium and solidify into prills. The velocity field in the bucket is very important to study, as it has great effect on the heat and mass transfer performance in prilling process. ANSYS 14.0 CFD package is used to simulate and Design Modeler and Catia V5 are used for geometrical model of the perforated prilling bucket. Velocity distribution on different planes are obtained and discussed.
13

Numerical simulation of the hydraulic performances and flow pattern of swallow-tailed flip bucket

Zhang, L., Zhang, J., Guo, Yakun, Peng, Y. 20 April 2020 (has links)
Yes / In this study, the evolution process of the swallow-tailed flip bucket water nappe entering into the plunge pool is simulated by using the standard 𝑘-𝜀 turbulence model and the volume of fluid method. The effects of the upstream opening width ratio and downstream bucket angle on the flow pattern, the unit discharge distribution and the impact pressure distribution are studied. Based on the numerical results, the inner and outer jet trajectories are proposed by using the data. Results show that the longitudinal stretching length decreases with the increase of the upstream opening width ratio, and increases with the increase of the downstream bucket angle. The water nappe enters the plunge pool in a long strip shape. Thus, the unit discharge distribution of water nappe entry is consistent with the pressure distribution at the plunge pool bottom. The upstream opening width ratio and downstream bucket angle should be chosen as their intermediate values in order to have a uniform discharge distribution and to reduce the pressure peak at the plunge pool floor, which is effectively to avoid instability and destruction of plunge pool floor. / National Science Fund for Distinguished Young Scholars (No. 51625901) and National Nature Science Foundation of China (No: 51579165).
14

Модернизация механизма открывания днища ковша экскаватора ЭКГ-20, производства ПАО "Уралмашзавод" : магистерская диссертация / Modernization of the mechanism of opening the bottom of the bucket of an excavator EKG-20, produced by PJSC "Uralmashzavod"

Алексеев, И. А., Alekseev, I. A. January 2019 (has links)
Одним из основных видов оборудования для горнодобывающей промышленности является экскаватор. Наиболее крупным производителем данного вида оборудования в Российской федерации является ПАО «Уралмашзавод» г. Екатеринбург. Наиболее распространенным среди используемых экскаваторов является серийный электрический экскаватор ЭКГ-20 с гусеничным ходом и с объемом ковша от 18 до 22 куб.м по международному стандарту SAE J67. На основе собранных статистических данных было проведено исследование эффективности работы экскаватора. Основным критерием, определяющим эффективность экскаватора. В ходе статистического исследования было выявлено, что наибольший процент аварийных простоев, связан с механизмом открывания днища ковша. Объектом данного проекта является электрический одноковшовый карьерный экскаватор ЭКГ-20, производства ПАО «Уралмашзавод». Предметом исследования является механизма открывания днища ковша. Основная цель данной работы является модернизация механизм открывания днища ковша, а также проведение анализа эксплуатационных показателей и экономической целесообразности проведения модернизации. / One of the main types of equipment for the mining industry is an excavator. PJSC "Uralmashzavod". Yekaterinburg. The most common among the types of excavators is a serial electric excavator EKG-20 with a delivery capacity of 18 to 22 cubic meters according to the international standard SAE J67. Based on the collected statistical data, a study was conducted of the efficiency of the excavator. The main criterion for determining the effectiveness of an excavator. In the course of statistical studies, it was found that the largest percentage of emergency downtime is associated with the opening mechanism of the bottom of the bucket. The object of this project is an electric single-bucket mining excavator EKG-20, produced by PJSC "Uralmashzavod". The subject of research is the mechanism of opening the bottom of the bucket. The main goal of this work is to modernize the mechanism for opening carpet days, as well as to analyze the performance indicators and the economic feasibility of modernization.
15

Investigation Of Stress Distribution In A Dragline Bucket Using Finite Element Analysis

Golbasi, Onur 01 March 2011 (has links) (PDF)
Overburden stripping is one of the essential activities in open-cast mines before starting the ore production. Due to the economic advantages, dragline is a widely utilized machinery in the overburden excavation. These earthmovers carry out the earthmoving process with dragging, hoisting and dumping actions of the bucket. Dragline excavator&rsquo / s efficiency is critically important, since poor performance of a dragline in the mine site directly affects the total efficiency of ore production. Therefore, productivity studies about dragline should be directed to decrease cycle time and increase payload, with avoiding catastrophic failure. In this regard, determination of stress distribution on the front-end components of dragline is meaningful to detect the external factors against dragline operation. In order to provide insight into the dragline bucket-formation interaction and stress distribution on the bucket, this research studies the simulation of horizontally moving dragline bucket where passive earth forces of the formation create resistance to the movement. Within the scope of simulation, (i) solid models of dragline bucket and the rigging mechanism were created in the Computer-Aided Drawing (CAD) environment, (ii) the model was transferred to the Finite-Element Analysis (FEA) software, (iii) two different case studies were simulated in the FEA virtual environment. One of the cases handled the stress investigation on the dragline bucket at the first interaction with the formation, while the other focused on the stress formations on a moving dragline bucket. Simulation results showed that overloading conditions occurred on bottom edges of the bucket lip for the first case, and drag hitch part and digging teeth for the second case. Moreover, a sensitivity analysis was carried out to measure the effects of formation specification changes on the stress values on the bucket. The analysis showed that stress values on the bucket elements were most sensitive to internal friction angle and least sensitive to density. Consequently, this thesis study discusses stress and deformation components on the dragline bucket during the interaction with formation. Since there is not enough number of research studies in the literature about the stress investigation on a moving dragline bucket, this thesis study is expected to provide benefit to understand the basis of dragline bucket actions.
16

Optimalizace konstrukce korečkových dopravníků / Design Optimization of Bucket Conveyors

Jonák, Martin January 2018 (has links)
This thesis deals with a study of methods sufficient to describe the behavior of bulk materials (homogeneous and non-homogeneous) during their transport by bucket elevators in the application focused on the optimization of the bucket shape and also on the optimization of operating parameters of whole elevator. More specifically, this thesis is based on the studying and creating analytical and numerical computational models which are used for description of flows and deformations especially of particulate materials. Firstly, the thesis is focused on the process of discharging the bucket – the relationship among the shape of the surface of a particulate material and geometry, position and movement of the bucket. The beginning and way of discharge of the bucket will be determined. Secondly, the thesis includes the overall computational model of a bucket elevator which is based on discrete element method and presented in the case study. The goal is to determine the limits of some classical physical and mathematical descriptions.
17

Předávací most kolesového rypadla / Forwarding bridge of bucket-wheel excavator

Zeizinger, Lukáš January 2016 (has links)
The document deals inspecting forces of the structure. The task of diploma thesis is analyze the crane load and chech up the stress of steel construction. Perform stress analysis forwarding bridge of bucket-wheel excavator by using finite element method. Further assess the consequences resulting from the design modifications. The project was carried out with cooperation with NOEN, a.s.
18

Quality changes, dust generation, and commingling during grain elevator handling

Boac, Josephine Mina January 1900 (has links)
Doctor of Philosophy / Department of Biological & Agricultural Engineering / Mark E. Casada / Ronaldo G. Maghirang / The United States grain handling infrastructure is facing major challenges to meet worldwide customer demands for wholesome, quality, and safe grains and oilseeds for food and feed. Several challenges are maintaining grain quality during handling; reducing dust emissions for safety and health issues; growing shift from commodity-based to specialty (trait-specific) markets; proliferation of genetically modified crops for food, feed, fuel, pharmaceutical, and industrial uses; and threats from biological and chemical attacks. This study was conducted to characterize the quality of grain and feed during bucket elevator handling to meet customer demand for high quality and safe products. Specific objectives were to (1) determine the effect of repeated handling on the quality of feed pellets and corn; (2) characterize the dust generated during corn and wheat handling; (3) develop and evaluate particle models for simulating the flow of grain during elevator handling; and (4) accurately simulate grain commingling in elevator boots with discrete element method (DEM). Experiments were conducted at the research elevator of the USDA-ARS Center for Grain and Animal Health Research (CGAHR) to determine the effect of repeated handling on the quality of corn-based feed pellets and corn. Repeated handling did not significantly influence the durability indices of feed pellets and corn. The feed pellets, however, had significantly greater breakage (3.83% per transfer) than the corn (0.382% per transfer). The mass of particulate matter < 125 μm was less for feed pellets than for corn. These corn-based feed pellets can be an alternative to corn in view of their handling characteristics. Another series of experiments was conducted in the same elevator to characterize the dust generated during corn and wheat handling. Dust samples were collected from the lower and upper ducts upstream of the cyclones in the elevator. Handling corn produced more than twice as much total dust than handling wheat (185 g/t vs. 64.6 g/t). Analysis of dust samples with a laser diffraction analyzer showed that the corn samples produced smaller dust particles, and a greater proportion of small particles, than the wheat samples. Published data on material and interaction properties of selected grains and oilseeds that are relevant to DEM modeling were reviewed. Using these material and interaction properties and soybeans as the test material, the DEM fundamentals were validated by modeling the flow of soybean during handling with a commercial software package (EDEM). Soybean kernels were simulated with single- and multi-sphere particle shapes. A single-sphere particle model best simulated soybean kernels in the bulk property tests. The best particle model had a particle coefficient of restitution of 0.6; particle static friction of 0.45 for soybean-soybean contact (0.30 for soybean-steel interaction); particle rolling friction of 0.05; normal particle size distribution with standard deviation factor of 0.4; and particle shear modulus of 1.04 MPa. The single-sphere particle model for soybeans was implemented in EDEM to simulate grain commingling in a pilot-scale bucket elevator boot using 3D and quasi-2D models. Pilot-scale boot experiments of soybean commingling were performed to validate these models. Commingling was initially simulated with a full 3D model. Of the four quasi-2D boot models with reduced control volumes (4d, 5d, 6d, and 7d; i.e., control volume widths from 4 to 7 times the mean particle diameter) considered, the quasi-2D (6d) model predictions best matched those of the initial 3D model. Introduction of realistic vibration motion during the onset of clear soybeans improved the prediction capability of the quasi-2D (6d) model. The physics of the model was refined by accounting for the initial surge of particles and reducing the gap between the bucket cups and the boot wall. Inclusion of the particle surge flow and reduced gap gave the best predictions of commingling of all the tested models. This study showed that grain commingling in a bucket elevator boot system can be simulated in 3D and quasi-2D DEM models and gave results that generally agreed with experimental data. The quasi-2D (6d) models reduced simulation run time by 29% compared to the 3D model. Results of this study will be used to accurately predict impurity levels and improve grain handling, which can help farmers and grain handlers reduce costs during transport and export of grains and make the U.S. grain more competitive in the world market.
19

IEEE 802.16與802.11e整合環境的服務品質保證 / QoS Guarantee for IEEE 802.16 Integrating with 802.11e

張志華, Chang, Chih-Hua Unknown Date (has links)
802.16與802.11e均有提供服務品質(QoS),但是其MAC並不相同,為了達到QoS的保證,我們使用馬可夫鍊(Markov Chain)模型分析在不同連線數量時802.11e EDCA的延遲時間(delay time)。然後,我們可以再利用允入控制(CAC)機制限制連線的數量以保證延遲時間的需求,並使用令牌桶(Token Bucket)機制,在滿足延遲及頻寬的需求下控制輸出流量,在我們的令牌桶機制中可以依照頻寬需求的變化自動調整令牌(Token)產生速率,最後使用封包丟棄機制提升吞吐量(throughput)。   在提出我們的方法後,我們使用Qualnet模擬器驗證延遲時間、封包丟棄率及吞吐量,結果表示我們所提出的方法在三方面都有明顯的改進。 / IEEE 802.16 and 802.11e both provide Quality of Service (QoS), but the MAC of betweens is different. Ensuring the QoS guarantee, we use a Markov Chain model to analyze the 802.11e EDCA delay time under variance number of connections. Therefore, we can employ a CAC mechanism constraining the number of connections to guarantee the delay requirement. Further, considering the delay requirement and the bandwidth, we use a Token Bucket mechanism to throttle the traffic output that ensures the delay and bandwidth to be satisfied. And our Token Bucket mechanism can tune the token rate automatically by bandwidth requirement. Finally, we use the Packet Drop mechanism to improve throughput. After my methodology, we validate the delay, packet drop rate and throughput by simulator Qualnet. We have significant improvement in delay, drop rate, and throughput.
20

Switched multi-hop FCFS networks - the influence of traffic shapers on soft real-time performance

Tirmazi, Syed Hasnain Raza, Sharma, Shashank January 2010 (has links)
<p>In the past 10 years, the bandwidths and processing capabilities of the networks have increased dramatically. The number of real-time applications using these networks has also increased. The large number of real-time packets might, in a switched multi-hop network, lead to unpredictable traffic patterns. This is not a problem when the traffic intensity is low, but if the same network is used by a large number of users simultaneously, the overall performance of the network degrades. In fact, unpredictable delays in the delivery of the message can adversely affect the execution of the tasks dependent on these messages, even if we take into account the soft real-time performance.</p><p>In this paper, we investigate the effect of traffic shapers on soft real-time performance. We will consider a switched multi-hop network with FCFS queues. We will implement two versions of the network simulator. One version will be without traffic shaper and the other version will use a traffic shaper. By comparing the results (for average delay, deadline miss ratio etc.) from both the versions, we will try to conclude if it is really beneficial to use traffic shapers for soft real-time performance. Leaky bucket and token bucket algorithms are the most popular ones for traffic shaper implementation. We will consider leaky bucket algorithm for our analysis. We analyse different versions of the leaky bucket and present the trade-off’s involved.</p>

Page generated in 0.2965 seconds