• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Stability of Open Thin Walled Channel Columns

Ghobarah, Ahmed A. 09 1900 (has links)
<p> This thesis deals with the analytical and experimental study of buckling strength, of thin walled channel struts, of different geometrical dimensions. The influence of the dimensions of the columns on the buckling strength has been studied.</p> <p> The experimental work consisted of testing different channels of thin sheeting to failure. Comparison has been made with the previous work done and a comparison is made between the theoretical predicted values and the experimental results. The Appendix includes detailed mathematical procedure and matrices formulations.</p> / Thesis / Master of Engineering (MEngr)
2

EFFECTS OF ROTATIONAL RESTRAINT ON THE POST BUCKLING RESPONSE OF THE AXIALLY RESTRAINT NON-SWAY STEEL COLUMN UNDER THERMAL LOADS.

Acharya, Ganesh 01 May 2019 (has links)
This research study is conducted on one bay-one story non-sway frames where the effects of the rotational restraint and slenderness ratio on the post-buckling strength of the axially restraint column under thermal load are studied. Geometric non-linear analysis of the structures is performed using a research program based on the beam-column theory. A total 32 models are created considering two different bottom end conditions: fixed and hinged, slenderness ratios: 50 and 125, and the beam to column length ratios: 0.5,1,1.5 and 2, to account for the variation in the rotational restraint. All models are subjected to thermal loads and numerical results are obtained to study the post-buckling behavior of the columns of the frames under thermal loads.
3

Ocelobetonové tlačené pruty z materiálů vysokých pevností / Steel-Concrete Columns Composed of High-Strength Materials

Röder, Václav January 2014 (has links)
The main objective of this thesis is the verification of the buckling strength of the composite compression members which were made from high-strength materials. This thesis is divided into four main chapters which are interconnected. The first chapter summarizes the current state of the problem of the compression members. The basis of this part is the elementary theories and researches, the task of this text is attempted to understand and obtain normative procedures which are important for practical use. The second part deals with the theoretical analysis of composite column, mainly with the examination of the individual effects on the buckling strength. The result of the first and the second parts is analytical algebraic equations which determine the buckling strength of the member. The third part contains the numerical analysis, which leads to create a numerical model of the compression column. The numerical model is used for the verification of the theoretical analysis and for the investigation of the behaviour of the column loaded by axial force. The last part deals with the experimental verification of the previous analyses. There are tested various types of the composite columns, which were made of steel with a yield strength up to 455 MPa and of the concrete with a cube compression strength up to 102 MPa. Experimental results confirmed the high reliability of centrally loaded column and every tested columns failed by flexural buckling. The final step is evaluation and comparison of the results obtained from previous four parts. It was founded that design criteria for centrally loaded steel-concrete column are too conservative and design relationships doesn´t use the positive properties of high-strength materials for economic design.
4

Strengthening Mechanisms in Microtruss Metals

Ng, Evelyn 18 December 2012 (has links)
Microtrusses are hybrid materials composed of a three-dimensional array of struts capable of efficiently transmitting an externally applied load. The strut connectivity of microtrusses enables them to behave in a stretch-dominated fashion, allowing higher specific strength and stiffness values to be reached than conventional metal foams. While much attention has been given to the optimization of microtruss architectures, little attention has been given to the strengthening mechanisms inside the materials that make up this architecture. This thesis examines strengthening mechanisms in aluminum alloy and copper alloy microtruss systems with and without a reinforcing structural coating. C11000 microtrusses were stretch-bend fabricated for the first time; varying internal truss angles were selected in order to study the accumulating effects of plastic deformation and it was found that the mechanical performance was significantly enhanced in the presence of work hardening with the peak strength increasing by a factor of three. The C11000 microtrusses could also be significantly reinforced with sleeves of electrodeposited nanocrystalline Ni-53wt%Fe. It was found that the strength increase from work hardening and electrodeposition were additive over the range of structures considered. The AA2024 system allowed the contribution of work hardening, precipitation hardening, and hard anodizing to be considered as interacting strengthening mechanisms. Because of the lower formability of AA2024 compared to C11000, several different perforation geometries in the starting sheet were considered in order to more effectively distribute the plastic strain during stretch-bend fabrication. A T8 condition was selected over a T6 condition because it was shown that the plastic deformation induced during the final step was sufficient to enhance precipitation kinetics allowing higher strengths to be reached, while at the same time eliminating one annealing treatment. When hard anodizing treatments were conducted on O-temper and T8 temper AA2024 truss cores, the strength increase was different for different architectures, but was nearly the same for the two parent material tempers. Finally, the question of how much microtruss strengthening can be obtained for a given amount of parent metal strengthening was addressed by examining the interaction of material and geometric parameters in a model system.
5

Strengthening Mechanisms in Microtruss Metals

Ng, Evelyn 18 December 2012 (has links)
Microtrusses are hybrid materials composed of a three-dimensional array of struts capable of efficiently transmitting an externally applied load. The strut connectivity of microtrusses enables them to behave in a stretch-dominated fashion, allowing higher specific strength and stiffness values to be reached than conventional metal foams. While much attention has been given to the optimization of microtruss architectures, little attention has been given to the strengthening mechanisms inside the materials that make up this architecture. This thesis examines strengthening mechanisms in aluminum alloy and copper alloy microtruss systems with and without a reinforcing structural coating. C11000 microtrusses were stretch-bend fabricated for the first time; varying internal truss angles were selected in order to study the accumulating effects of plastic deformation and it was found that the mechanical performance was significantly enhanced in the presence of work hardening with the peak strength increasing by a factor of three. The C11000 microtrusses could also be significantly reinforced with sleeves of electrodeposited nanocrystalline Ni-53wt%Fe. It was found that the strength increase from work hardening and electrodeposition were additive over the range of structures considered. The AA2024 system allowed the contribution of work hardening, precipitation hardening, and hard anodizing to be considered as interacting strengthening mechanisms. Because of the lower formability of AA2024 compared to C11000, several different perforation geometries in the starting sheet were considered in order to more effectively distribute the plastic strain during stretch-bend fabrication. A T8 condition was selected over a T6 condition because it was shown that the plastic deformation induced during the final step was sufficient to enhance precipitation kinetics allowing higher strengths to be reached, while at the same time eliminating one annealing treatment. When hard anodizing treatments were conducted on O-temper and T8 temper AA2024 truss cores, the strength increase was different for different architectures, but was nearly the same for the two parent material tempers. Finally, the question of how much microtruss strengthening can be obtained for a given amount of parent metal strengthening was addressed by examining the interaction of material and geometric parameters in a model system.

Page generated in 0.0928 seconds