• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Finite Element Analyses of Failure Mechanisms and Structure-Property Relationships in Microtruss Materials

Bele, Eral 10 December 2012 (has links)
Microtruss materials are assemblies of struts or columns arranged periodically in space. The majority of past research efforts have focused on the key issue of microtruss architectural optimization. By contrast, this study focuses on the internal material structure at the level of the individual struts. Microstructural, geometrical, and material design techniques are used to improve their mechanical properties. The finite element method is used to verify and create predictive analytical models, explain the dependence of strut properties on geometry, material properties and failure mechanisms, and extend the strut design analysis into suggestions for the improvement of fabrication methods. Three strut design methods are considered. First, microstructural design is performed by considering the influence of strut geometry on the strain energy imparted during stretch bending. By using the perforation geometry to modify the location and magnitude of this strain energy, microtruss materials with lower density and higher strength can be fabricated. Second, structural sleeves of aluminum oxide and electrodeposited nanocrystalline nickel are used to reinforce architecturally optimized aluminum alloy microtruss assemblies, creating hybrid materials with high weight-specific strength. The mechanical properties are controlled by the interaction between material and mechanical failure; this interaction is studied through finite element analyses and a proposed analytical relationship to provide suggestions for further improvements. Finally, hollow cylindrical struts are fabricated from electrodeposited nanocrystalline nickel. The high strength to weight ratio achieved in these struts is due to the microstructural and cross-sectional efficiency of the material.
2

Finite Element Analyses of Failure Mechanisms and Structure-Property Relationships in Microtruss Materials

Bele, Eral 10 December 2012 (has links)
Microtruss materials are assemblies of struts or columns arranged periodically in space. The majority of past research efforts have focused on the key issue of microtruss architectural optimization. By contrast, this study focuses on the internal material structure at the level of the individual struts. Microstructural, geometrical, and material design techniques are used to improve their mechanical properties. The finite element method is used to verify and create predictive analytical models, explain the dependence of strut properties on geometry, material properties and failure mechanisms, and extend the strut design analysis into suggestions for the improvement of fabrication methods. Three strut design methods are considered. First, microstructural design is performed by considering the influence of strut geometry on the strain energy imparted during stretch bending. By using the perforation geometry to modify the location and magnitude of this strain energy, microtruss materials with lower density and higher strength can be fabricated. Second, structural sleeves of aluminum oxide and electrodeposited nanocrystalline nickel are used to reinforce architecturally optimized aluminum alloy microtruss assemblies, creating hybrid materials with high weight-specific strength. The mechanical properties are controlled by the interaction between material and mechanical failure; this interaction is studied through finite element analyses and a proposed analytical relationship to provide suggestions for further improvements. Finally, hollow cylindrical struts are fabricated from electrodeposited nanocrystalline nickel. The high strength to weight ratio achieved in these struts is due to the microstructural and cross-sectional efficiency of the material.
3

The Architectural Optimization of Stretch-formed Ceramic-aluminum Microtruss Composites

Yu, Hiu Ming (Bosco) 27 November 2012 (has links)
Microtruss cellular materials have large internal surface areas and small cross-sectional strut dimensions, permitting surface modification to substantially enhance their mechanical performance. For instance, a ~400% increase in compressive strength with virtually no weight penalty can be induced by a hard anodized Al2O3 ceramic coating of only ~50 µm thickness. The present study seeks the optimal architecture of these composites by exploring three research challenges: architecture and degree of forming are interdependent due to stretch-forming, architecture and the material properties are interdependent due to work-hardening, and ceramic structural coatings add design complexity. Theoretical predictions and architectural optimizations demonstrated a potential weight reduction of ~3% to ~60% through the increase of internal truss angle for both annealed and work-hardened microtruss cores. While further validation is needed, experimental evidence in this study suggested the collapse in ceramic-aluminum microtruss composites could be considered as a mixture of composite strut global buckling and oxide local shell buckling mechanisms.
4

The Architectural Optimization of Stretch-formed Ceramic-aluminum Microtruss Composites

Yu, Hiu Ming (Bosco) 27 November 2012 (has links)
Microtruss cellular materials have large internal surface areas and small cross-sectional strut dimensions, permitting surface modification to substantially enhance their mechanical performance. For instance, a ~400% increase in compressive strength with virtually no weight penalty can be induced by a hard anodized Al2O3 ceramic coating of only ~50 µm thickness. The present study seeks the optimal architecture of these composites by exploring three research challenges: architecture and degree of forming are interdependent due to stretch-forming, architecture and the material properties are interdependent due to work-hardening, and ceramic structural coatings add design complexity. Theoretical predictions and architectural optimizations demonstrated a potential weight reduction of ~3% to ~60% through the increase of internal truss angle for both annealed and work-hardened microtruss cores. While further validation is needed, experimental evidence in this study suggested the collapse in ceramic-aluminum microtruss composites could be considered as a mixture of composite strut global buckling and oxide local shell buckling mechanisms.
5

Strengthening Mechanisms in Microtruss Metals

Ng, Evelyn 18 December 2012 (has links)
Microtrusses are hybrid materials composed of a three-dimensional array of struts capable of efficiently transmitting an externally applied load. The strut connectivity of microtrusses enables them to behave in a stretch-dominated fashion, allowing higher specific strength and stiffness values to be reached than conventional metal foams. While much attention has been given to the optimization of microtruss architectures, little attention has been given to the strengthening mechanisms inside the materials that make up this architecture. This thesis examines strengthening mechanisms in aluminum alloy and copper alloy microtruss systems with and without a reinforcing structural coating. C11000 microtrusses were stretch-bend fabricated for the first time; varying internal truss angles were selected in order to study the accumulating effects of plastic deformation and it was found that the mechanical performance was significantly enhanced in the presence of work hardening with the peak strength increasing by a factor of three. The C11000 microtrusses could also be significantly reinforced with sleeves of electrodeposited nanocrystalline Ni-53wt%Fe. It was found that the strength increase from work hardening and electrodeposition were additive over the range of structures considered. The AA2024 system allowed the contribution of work hardening, precipitation hardening, and hard anodizing to be considered as interacting strengthening mechanisms. Because of the lower formability of AA2024 compared to C11000, several different perforation geometries in the starting sheet were considered in order to more effectively distribute the plastic strain during stretch-bend fabrication. A T8 condition was selected over a T6 condition because it was shown that the plastic deformation induced during the final step was sufficient to enhance precipitation kinetics allowing higher strengths to be reached, while at the same time eliminating one annealing treatment. When hard anodizing treatments were conducted on O-temper and T8 temper AA2024 truss cores, the strength increase was different for different architectures, but was nearly the same for the two parent material tempers. Finally, the question of how much microtruss strengthening can be obtained for a given amount of parent metal strengthening was addressed by examining the interaction of material and geometric parameters in a model system.
6

Strengthening Mechanisms in Microtruss Metals

Ng, Evelyn 18 December 2012 (has links)
Microtrusses are hybrid materials composed of a three-dimensional array of struts capable of efficiently transmitting an externally applied load. The strut connectivity of microtrusses enables them to behave in a stretch-dominated fashion, allowing higher specific strength and stiffness values to be reached than conventional metal foams. While much attention has been given to the optimization of microtruss architectures, little attention has been given to the strengthening mechanisms inside the materials that make up this architecture. This thesis examines strengthening mechanisms in aluminum alloy and copper alloy microtruss systems with and without a reinforcing structural coating. C11000 microtrusses were stretch-bend fabricated for the first time; varying internal truss angles were selected in order to study the accumulating effects of plastic deformation and it was found that the mechanical performance was significantly enhanced in the presence of work hardening with the peak strength increasing by a factor of three. The C11000 microtrusses could also be significantly reinforced with sleeves of electrodeposited nanocrystalline Ni-53wt%Fe. It was found that the strength increase from work hardening and electrodeposition were additive over the range of structures considered. The AA2024 system allowed the contribution of work hardening, precipitation hardening, and hard anodizing to be considered as interacting strengthening mechanisms. Because of the lower formability of AA2024 compared to C11000, several different perforation geometries in the starting sheet were considered in order to more effectively distribute the plastic strain during stretch-bend fabrication. A T8 condition was selected over a T6 condition because it was shown that the plastic deformation induced during the final step was sufficient to enhance precipitation kinetics allowing higher strengths to be reached, while at the same time eliminating one annealing treatment. When hard anodizing treatments were conducted on O-temper and T8 temper AA2024 truss cores, the strength increase was different for different architectures, but was nearly the same for the two parent material tempers. Finally, the question of how much microtruss strengthening can be obtained for a given amount of parent metal strengthening was addressed by examining the interaction of material and geometric parameters in a model system.

Page generated in 0.0489 seconds