Spelling suggestions: "subject:"bunker full"" "subject:"bunker fue""
1 |
Optimization algorithms for maritime terminal and fleet managementÁlvarez Serrano, José Fernando 29 September 2008 (has links)
El plan de carga del buque debe adherirse a las instrucciones de estiba del operador del buque. Estas instrucciones especifican las características generales de cada contenedor que habrá de ccargarse. El plan de carga también debe agilizar las operaciones de transporte en la explanada de la terminal. Presentamos dos algoritmos para generar el plan de carga. El primero utiliza el método de descomposición Lagrangeana. El segundo utiliza la metaheurística tabú. Las companías navieras se enfrentan a un problema extremadamente complejo cuando intentan determinar la composición y ruteo óptimo de su flota. Presentamos un modelo y algoritmo para este problema. El modelo representa los costes operativos de una naviera. También permite la respresentación de buques con diferentes propiedades, puntos y costes de transbordo, retrasos en puerto, y la posibilidad de rechazar una solicitud de transporte. Un caso práctico explora la sensitividad de los resultados a cambios en el precio del combustible. / The vessel loading plan must comply with stowage instructions provided by the vessel operator, which specify characteristics of each container to be loaded. Additionally, the vessel loading plan should expedite transport operations in the yard. We present two vessel planning algorithms. In the first model, the vessel planning problem is formulated as a mixed integer programming (MIP) model and solved using Lagrangean relaxation and branch and bound. In the second model, a tabu metaheuristic is employed. Liner companies face a complex decision problem in determining the optimal fleet composition and routing. We present a model that captures the revenues and operating expenses of a liner company. The model allows for vessel types with different cost and operating properties; transhipment hubs; port delays; regional trade imbalances; and the possibility of rejecting transportation demand selectively. A case study explores the sensitivity of optimal fleet composition and routing to bunker costs.
|
Page generated in 0.0374 seconds