• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 9
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 120
  • 78
  • 74
  • 24
  • 20
  • 18
  • 18
  • 15
  • 14
  • 12
  • 11
  • 11
  • 10
  • 10
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Gamma-Ray Bursts from First Stars and Ultra-Long Gamma-Ray Bursts / 初代星を起源としたガンマ線バーストとウルトラ・ロング・ガンマ線バースト

Nakauchi, Daisuke 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第18791号 / 理博第4049号 / 新制||理||1582(附属図書館) / 31742 / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 中村 卓史, 教授 谷森 達, 教授 田中 貴浩 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
82

Multi-messenger emission from gamma-ray bursts

Samuelsson, Filip January 2020 (has links)
Multi-messenger astronomy is a very hot topic in the astrophysical community. A messenger is something that carries information. Different astrophysical messenger types are photons, cosmic rays, neutrinos, and gravitational waves. They all carry unique and complementary information to one another. The idea with multi-messenger astronomy is that the more different types of messengers one can obtain from the same event, the more complete the physical picture becomes. In this thesis I study the multi-messenger emission from gamma-ray bursts (GRBs), the most luminous events known in the Universe. Specifically, I study the connection of GRBs to extremely energetic particles called ultra-high-energy cosmic rays (UHECRs). UHECRs have unknown origin despite extensive research. GRBs have long been one of the best candidates for the acceleration of these particles but a firm connection is yet to be made. In Paper I and Paper II, we study the possible GRB-UHECR connection by looking at the electromagnetic radiation from electrons that would also be accelerated together with the UHECR. My conclusion is that the signal from these electrons does not match current GRB observation, disfavoring that a majority of UHECRs comes from GRBs. / ”Multi-messenger astronomy” (mångbudbärarastronomi, fri översättning) är ett väldigt aktuellt område inom astrofysiken just nu. En meddelare är någonting som bär på information. Olika meddelartyper inom astrofysiken är fotoner, kosmisk strålning, neutriner och gravitations vågor. Dessa har alla unik och olika typ av information som kompletterar varandra. Idén bakom multi-meddelare-astronomi är att ju fler olika meddelartyper vi kan upptäcka från samma event, desto mer komplett blir vår fysikaliska tolkning. I denna avhandling studerar jag multi-meddelare emission från gammablixtar (GRBs), de mest ljusstarka företeelser vi känner till i Universum. Mer specifikt, så studerar jag kopplingen mellan GRBs och ultraenergetisk kosmisk strålning (UHECRs). Ursprunget till UHECRs är fortfarande okänt trots långt pågående forskning. GRBs har länge varit en av de mest lovande accelerationskandidaterna men än så länge finns inga fasta bevis. I Paper I och Paper II studerar vi den möjliga GRB-UHECR kopplingen genom att studera den elektromagnetiska strålningen från elektronerna som även de skulle bli accelererade tillsammans med UHECRs. Min slutsats är att strålningen från elektronerna inte matchar observationer från GRBs, vilket talar emot att en majoritet av UHECRs kommer från GRBs.
83

Fitting a photospheric prompt emission model to GRB data: The Kompaneets RMS approximation (KRA) / Anpassning av en fotosfärisk gamma-blixt modell till data: The Kompaneets RMS Approximation (KRA)

Wistemar, Oscar January 2023 (has links)
Gamma-ray bursts (GRBs) are some of the most energetic events in the universe. Shocks occurring below the photosphere are likely radiation mediated shocks (RMSs) and are suspected to shape the spectra. Due to computational costs of simulating RMSs, models had not been fitted to data and a faster model was needed. The Kompaneets RMS Approximation (KRA) is an analog model of RMSs, creating spectra which are identical to full RMS simulation spectra and it is significantly faster. For a sample of short GRBs I found that spectra are very hard and close to a non-dissipative photosphere (NDP). Therefore any trace of energy dissipation is lost to thermalization and many KRA solutions are possible with statistics similar to the Band model. A sample of long GRBs have typical spectra, i.e. spectra much broader than a blackbody (BB) and the KRA can model these spectra very well. Statistically, KRA is as good as the Band model and significantly better for GRB211211. I also found two spectral shapes describing observed data equally well. First, a broadened BB for a steady-state outflow, and secondly, optically shallow shocks for a non steady-state outflow. To distinguish between these solutions, upcoming detectors with lower-energy data are important. In conclusion, the KRA can reproduce photospheric spectra altered by a RMS, and these spectra can explain observed GRB spectra. If the spectrum is not thermalized, information about the properties of the shock can be deduced from observed GRB spectra. / Gamma-blixtar är några av de mest energirika händelserna i universum. Chocker som uppkommer under fotosfären är troligtvis strålnings medlade chocker (RMSer) och misstänks forma spektra. Höga beräkningsmässiga kostnader för simuleringar av RMSer har lett till att modeller inte har anpassats till data. The Kompaneets RMS Approximation (KRA) är en analog modell av RMSer som skapar identiska spektra och är mycket snabbare. För ett urval av korta gamma-blixtar hittar jag väldigt hårda spektra, nära en icke-dissiperad fotosfär (NDP). Alla spår av dissipering har därför försvunnit p.g.a. termaliseringen och många olika KRA lösningar kan anpassa dessa spektra lika bra som Band modellen. Ett urval av långa gamma-blixtar har typiska spektra, d.v.s. spektra mycket bredare än svartkropp spektra och KRA kan anpassa dessa spektra väldigt bra. Statistiskt är KRA lika bra som Band modellen och t.o.m. mycket bättre för GRB211211. Jag har också hittat två olika former på spektra som anpassar data lika bra. Först, en breddad svartkropp för ett utflöde i jämvikt och den andra, optiskt grunda shocker för ett utflöde som inte är i jämvikt. För att urskilja mellan dessa lösningar är framtida detektorer med data för lägre energies viktiga. För att sammanfatta, KRA kan reproducera fotosfäriska spektra påverkade av en RMS och dessa spektra can förklara observerade gamma-blixt spektra. Om spektrumet inte är termaliserat kan information om chockens egenskaper hämtas från observerade gamma-blixt spektra.
84

Rapid Neutron-Capture Nucleosynthesis from the Births and Deaths of Neutron Stars

Desai, Dhruv Ketan January 2023 (has links)
The astrophysical origins of the rapid neutron-capture process (r-process), which gives rise to roughly half of the elements heavier than iron, has remained a mystery for almost 70 years. The likely violent events, which seed the r-process abundances in our solar system and galaxy, remain uncertain to this day. This is in part due to nuclear physics uncertainties associated with the r-process itself, but mainly due to uncertainties in astrophysics modeling. The discovery of the radioactively-powered kilonova emission from the neutron star merger event GW170817 confirmed the violent deaths of neutron stars as one key site of the r-process in the universe. However, other evidence appears to favor an additional r-process channel that more promptly follows star formation in the universe, such as core-collapse supernovae (CCSNe), i.e. the brilliant births of neutron stars. The two viable sites for the r-process are (1) core-collapse supernovae (CCSNe), which are explosions of massive stars at the end of their lives and (2) compact object mergers, which are violent collisions of stellar remnants formed at the endpoints of stellar evolution. Chapters 2 and 3 of this dissertation present general relativistic magnetohydrodynamic simulations of one potential r-process site associated with CCSNe: the neutrino-driven wind. These outflows are launched from the hot proto-neutron star (PNS) remnant by neutrino-heating above their surfaces, within seconds after the collapse of a massive star. However, previous work has shown that spherically symmetric winds from non-rotating PNS fail to achieve the requisite conditions for a robust r-process. Chapter 2 explores for the first time the combined effects of rapid rotation and strong gravity of the PNS on the wind properties. Chapter 3 explores the impact of a dynamically strong ordered magnetic field on the properties of non-rotating PNS winds. The wind in both cases is simulated in a controlled environment rather than as a part of a self-consistent global CCSNe simulation, to assess the viability of r-process nucleosynthesis as a function of PNS properties (neutrino energies/luminosities, rotation rate, magnetization). We find that rapid rotation allows for outflows that are ~10% more neutron-rich in the equatorial region, where the mass loss rate is roughly an order of magnitude higher than that of otherwise equivalent non-rotating models. The birth of very rapidly spinning neutron stars may thus be a site for the production of light r-process nuclei (38 < Z < 47). For PNSs with sufficiently strong magnetic fields (such that magnetic pressure exceeds gas pressure above the PNS surface), we find that equatorial outflows are trapped by the magnetic field in a region near the surface, and therefore receive additional neutrino heating relative to a freely-expanding unmagnetized wind. This allows a modest fraction of the wind material to achieves entropies high enough to synthesize 2nd peak r-process elements via an alpha-rich freeze-out mechanism. The final chapter explores the interplay between the r-process and the dynamics of compact object merger ejecta. Gravitational wave observatories are expected to detect several additional binary neutron star (BNS) and black hole-neutron star (BHNS) mergers in current and future observing runs, some of which may be accompanied by electromagnetic counterparts such as kilonovae. However, distinguishing more distant BNS from BHNS mergers based on their associated gamma-ray bursts (GRB), has proven tricky. This chapter presents a calculation of the effects of r-process heating on the dynamics of tidal ejecta from BNS and BHNS mergers. In particular we explore whether late-time fall-back of weakly bound debris created during the merger to the central black hole remnant, can explain the temporally extended X-ray emission observed following several merger GRB on timescales of several seconds to minutes. As a result of the different impact that r-process heating has depending on the composition of the ejecta and the mass of the black hole, a method to differentiate BHNS from BNS mergers, based on their extended X-ray emission, is proposed.
85

30S Beam Development and the 30S Waiting Point in Type I X-Ray Bursts

Kahl, David Miles 09 1900 (has links)
Nuclear physics tells us a lot about astrophysics, particularly the energy generation in stars. The present work is a thesis in experimental nuclear physics, reporting the results of 30S radioactive beam development for a future experiment directly measuring data to extrapolate the 30S(α,p) stellar reaction rate in Type I X-ray bursts, a phenomena where nuclear explosions occur repeatedly on the surface of accreting neutron stars. On the astrophysics side, the work details basic stellar physics and stellar reaction formalism in Chapter 1, the behaviour of compact stars in Chapter 2, and a full literature review of Type I X-ray bursts in Chapter 3. Nuclear experiments are non-trivial, and the results reported here were not accomplished by the author alone. Stable-beam experiments are technically challenging and involved, but for the case at hand, the halflife of 30S is a mere 1.178 seconds, and in order to measure reaction cross-sections, we must make a beam of the radionuclide 30S in situ and use these rare nuclei immediately in our measurement. Particle accelerator technology and radioactive ion production are treated in Chapter 4, and the experimental facility and nuclear measurement techniques are discussed in some detail in Chapter 5. In order to perform a successful future experiment which allows us to calculate the stellar 30S(α, p) reaction rate, calculations indicate we require a 30S beam of ~ 10^5 particles per second at ~ 32 MeV. Based on our recent beam development experiments in 2006 and 2008, it is believed that such a beam may be fabricated in 2009 according to the results presented in Chapters 6 and 7. We plan to measure the 4He(30S,p) cross-section at astrophysical energies in 2009, and some remarks on the planned (α,p) technique are also elucidated in Chapters 5, 6 and 7. / Thesis / Master of Science (MSc)
86

A Search for Astrophysical Radio Transients at Meter Wavelengths

Cutchin, Sean 06 December 2011 (has links)
Astrophysical phenomena such as exploding primordial black holes (PBHs), gamma-ray bursts (GRBs), compact object mergers, and supernovae, are expected to produce a single pulse of electromagnetic radiation detectable at the low-frequency end of the radio spectrum. Detection of any of these pulses would be significant for the study of the objects themselves, their host environments, and the interstellar/intergalactic medium. Furthermore, a detection of a radio transient from an exploding PBH could be a signature of an extra spatial dimension, which would drastically alter our perception of spacetime. However, even upper limits on the existence of PBHs, from transient searches, would be important to discussions of cosmology. We describe a method to carry out an agnostic single-dispersed-pulse search, and apply it to data collected with the Eight-meter-wavelength Transient Array (ETA). ETA is a radio telescope dedicated to searching for transient pulses. It consists of 12 crossed-dipole antenna stands with Galactic-noise-limited performance from 29-47 MHz. There is a vast amount of data collected from an ETA observation. It is therefore greatly beneficial to use a computer cluster, which works in parallel on different parts of a data set, in order to carry out a single-pulse search quickly and efficiently. Each spectrogram in a data set needs to be analyzed individually, without reference to the rest, in order to utilize a computer cluster's capabilities. The data reduction software has been developed for single-dispersed-pulse searches, and is described in this thesis. The data reduction involves sweeping through the collected data with a dedispersion routine assuming a range of dispersion measures. The resulting time series are searched with multiple matched filters for signals above a signal-to-noise threshold. Applying the single pulse search to ~ 30 hours of ETA data did not yield a compelling detection of an astrophysical signal. However, from ≈ 5 hours of interference-free data we find an observational upper limit to the rate of exploding PBHs of r ≈ 4.8 × 10⁻⁷ pc⁻³ y⁻¹ for a PBH with a fireball Lorentz-factor f = 10<sup>4.3</sup>. This limit is applicable to PBHs in the halo of the Galaxy to distances ≲ 2 kpc, and dispersion measures ≲ 80 pc cm⁻³ . We also find a source-agnostic rate limit ≲ 0.25 events y⁻¹ deg⁻² for pulses of duration < 3 s, and having apparent energy densities ≳ 2.6 × 10⁻²³ J m⁻² Hz⁻¹ at 38 MHz. / Ph. D.
87

Bursting dynamics and topological structure of in vitro neuronal networks / Dynamik von Bursts und topologische Struktur von neuronalen Netzwerken in vitro

Stetter, Frank Olav 22 October 2012 (has links)
No description available.
88

Study of neural correlates of attention in mice with spectro-spatio-temporal approaches / En studie om neurala korrelater av uppmärksamhet hos möss med spektro-spatio-temporala tillvägagångssätt

Ortiz, Cantin January 2018 (has links)
While signatures of attention can be observed in widespread areas within and outside of cortex, the control of attention is thought to be regulated by higher cognitive brain areas, such as the prefrontal cortex. In their recent study on mice Kim et al. could show that successful allocation of attention is characterized by increased spiking of a specific type of inhibitory interneurons, the parvalbumin neurons, and higher oscillatory activity in the gamma band in the local prefrontal network. It was recently demonstrated that encoding of working memory in prefrontal areas is linked to bursts of gamma oscillations, a discontinuous network process characterized by short periods of intense power in the gamma band. The relationship between attention and working memory is unclear, and it is possible that these two cognitive processes share encoding principles. To address this gap, the electrophysiological data collected in the Carlén Lab have been analyzed with advanced spatio-temporal approaches. In particular, we have analyzed bursting gamma activity in medial prefrontal cortex during attentional processing and investigated the similarities to gamma bursting observed during working memory. Gamma-band bursts during attention were reliably detected with several methods. We have characterized several features of the bursts, including the occurrence, duration and amplitude. The neuronal firing rates during and outside of bursts have also been computed. We investigated the correlation between different criteria characterizing the gamma burst and successful vs failed allocation of attention. Control data were generated to discuss the obtained results. The aim of the study was to explore the hypothesis that the medial prefrontal cortex encodes attention trough gamma bursts, which could reveal some similarities and differences in coding of central cognitive processes. No clear difference was found in the characterization between successful and failed allocation of attention. In addition, results were very similar in control set and original data. No underlying mechanism could be identified from this analysis. Therefore, as the bursts occurring in the gamma band in the prefrontal cortex (PFC) were not discriminative with respect to the different tested conditions, they do not seem to encode information related to attention. / Även fast flera olika hjärnområdens aktivitet kan korreleras med uppmärksamhet, anses kontrollen av uppmärksamhet regleras av högre kognitiva hjärnområden, såsom främre hjärnbarken. I en nyligen publicerad artikel studerade Kim et al. hjärnaktiviteten hos möss och kunde visa att en framgångsrik uppmärksamhet kännetecknas av en ökad aktivitet av en specifik typ av inhiberande nervceller, parvalbumin celler, och högre oscillerande aktivitet i gammafrekvens i främre hjärnbarkens lokala nätverk. Det har nyligen visats att kodning av arbetsminne i främre hjärnbarken är kopplat till utbrott av gamma-oscillationer, en diskontinuerlig nätverksprocess som kännetecknas av korta perioder av intensiva oscillationer av det lokala nätverket i gammafrekvens . Relationen mellan uppmärksamhet och arbetsminne är oklar, och det är möjligt att dessa två kognitiva processer delar kodningsprinciper. För att minska detta gap av kunskap har den elektrofysiologiska datan som samlats in i Carlén Lab analyserats med avancerade spatio-temporala tillvägagångssätt. I synnerhet har vi analyserat utbrott i gammaaktivitet i främre hjärnbarken under uppmärksamhet och undersökt likheterna med gamma- utbrott observerade under arbetsminne. Gamma-bandutbrott under uppmärksamhet påvisades på ett tillförlitligt sätt med flera metoder. Vi har karaktäriserat flera funktioner hos utbrotten, inklusive förekomsten, varaktigheten och amplituden. De enskilda cellernas aktivitet undersöktes även under och utanför utprotten av gamma-oscillationer. Vi undersökte sambandet mellan de olika kriterier som karakteriserar gamma-utbrott under framgångsrik mot misslyckad allokering av uppmärksamhet. Kontrolldata genererades för att diskutera de erhållna resultaten. Syftet med studien var att utforska hypotesen att den främre hjärnbarken kodar uppmärksamhet genom gamma-utbrott, vilket kan avslöja vissa likheter och skillnader i kodning av centrala kognitiva processer. Ingen klar skillnad hittades i karaktäriseringen mellan framgångsrik och misslyckad allokering av uppmärksamhet. Dessutom var resultaten mycket likartade i kontrolluppsättningen och den ursprungliga datan. Ingen underliggande mekanism kunde identifieras ur denna analys. Eftersom de utbrott som uppstod i gamma-bandet i främre hjärnbarken inte var unika med hänsyn till de olika testade förhållandena, tycks de därför inte koda information relaterad till uppmärksamhet.
89

Mine gas and coal dust explosions and methane outbursts - their causes and prevention.

Flint, John Derek January 1990 (has links)
A Dissertation submitted to the Faculty of Engineering, University of the Witwatersrand, Johannesburg, for the degree of Master of Science in Engineering. / Ignitions of methane and coal dust have caused considerable loss of life and damage to installations in South African collieries during the past century. The phenomenon of methane outbursts have also resulted in the creation of dangerous conditions underground. The dissertation examines the causes of methane outbursts and the seven main ignition sources leading to methane and coal dust explosions. These ignition sources were derived from an examination of Mines Department inquiries extending back to 1891. the date of the first known ignition of mine gas. Selected incidents were chosen from the official Inquiries for each ignition source and these are dealt with in detail. This includes an investigation into the many factors which developed prior to the individual explosions and the effects of the aftermath such incidents. Precautions to be adopted to prevent methane outbursts and minimise the risk of methane and coal dust explosions as a result of the seven ignition sources are detailed at the end of each chapter. / Andrew Chakane 2018
90

A relative moment tensor inversion technique applied to seismicity induced by mining

Andersen, Lindsay, Marguerite 18 July 2001 (has links)
Three hybrid moment tensor inversion methods were developed for seismic sources originating from a small source region. These techniques attempt to compensate for various types of systematic error (or noise) that influence seismograms recorded in the underground environment in order to achieve an accurate and robust measure of the seismic moment tensor. The term 'hybrid' was used to distinguish between the relative method proposed by Dahm (1995) and the methods developed in this thesis. The hybrid methods were essentially weighting schemes designed to enhance the accuracy of the computed moment tensors by decreasing the influence of any low quality observations, to damp (or amplify) any signals that have been overestimated (or underestimated) due to local site effects, and to correct for raypath focussing or defocussing that results from inhomogeneities in the rockmass. The weighting or correction applied to a particular observation was derived from the residuals determined when observed data were compared with corresponding theoretical data (for a particular geophone site, sensor orientation and wave phase) and were calculated using a cluster of events rather than a single event. The first and second weighting schemes were indirectly related to the mean and the median of the residuals where the residuals were defined as the ratio of the theoretical to observed data. In the third scheme, the residuals were defined as the difference between the observed and theoretical data and the weights were based on the distance of a data point (measured in standard deviations) from the mean residual. In each of the weighting schemes, the correction was applied iteratively until the standard error of the least-squares solution (normalised to the scalar seismic moment) was a minimum. The schemes were non-linear because new weights were calculated for each iteration. A number of stability tests using synthetic data were carried out to quantify the source resolving capabilities of the hybrid methods under various extreme conditions. The synthetic events were pure double-couple sources having identical fault-plane orientations, and differing only in rake. This similarity in the mechanisms was chosen because the waveforms of tightly grouped events recorded underground often show high degrees of similarity. For each test, the results computed using the three hybrid methods were compared with one another and with those computed using the single event, absolute method and two relative methods (with and without a reference mechanism). In the noise-free situation, it was found that the relative method without reference mechanism showed the highest resolution of mechanisms, provided that the coverage of the focal sphere was not too sparse (> 3 stations). The hybrid method using a median correction was found to be the most robust of all the methods tested in the most extreme case of poor coverage (2 stations) of the focal sphere. When increasing levels of pseudo-random noise were applied to the data, the absolute moment tensor inversion method, the hybrid method using a median correction, and the hybrid method using a weighted mean correction all showed similar robustness and stability in extreme configurations concerning network coverage of the focal sphere and noise level. When increasing levels of systematic noise were added to the data, the hybrid methods using a median correction and weighted mean correction were found to exhibit similar robustness and stability in extreme configurations concerning network coverage of the focal sphere and systematic noise. In all situations investigated, these two hybrid methods outperformed the relative and absolute methods. The hybrid moment tensor inversion methods using a median and weighted mean correction were applied to a cluster of 14 events, having remarkably similar waveforms, recorded at Oryx Gold Mine. For comparative purposes, the absolute method was also applied. The inputs to the inversion methods consisted of the spectral plateaus of both P- and S-waves at frequencies below the comer frequency of the time-integrated displacement traces. The polarities of dominant motion were used as an additional constraint and were determined from cross-correlation of observed with synthetic P- or S-waves. The solutions computed using the hybrid moment tensor inversion using a median correction displayed a distinct improvement after the iterative residual correction procedure was applied. The radiation patterns and faultplane solutions showed a high degree of similarity, and are probably more accurate reflections of reality than those computed using the absolute moment tensor inversion methods. These observations are very encouraging and point towards the method's potential for use as a standard processing tool for mine seismicity. The implications of this work are a better understanding of the focal mechanisms of seismic events induced by mining activities, ultimately leading to improved safety underground.

Page generated in 0.1109 seconds