• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 155
  • 141
  • 22
  • 15
  • 14
  • 8
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 462
  • 133
  • 51
  • 46
  • 37
  • 32
  • 28
  • 27
  • 22
  • 22
  • 22
  • 21
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
301

Computational approaches to predicting and characterising chemical and biochemical processes

Liu, Yuli 10 1900 (has links)
<p>The prediction and characterisation of chemical and biochemical processes are fundamental tasks in computational chemistry. Small chemical systems can be characterised by the stationary points on potential energy surface and reaction paths linking them. For large biological systems, statistical sampling is required to characterising their average properties.</p> <p>This thesis presents my Ph.D. work on developing new methods to predict and characterise chemical and biological processes. Two path-finding methods for finding the minimum energy reaction path and alternative reaction paths for small gas-phase reactions have been elucidated with examples, and molecular dynamic simulations have been used to characterise the binding affinity of protein-ligand complex and the free energy of protonation processes in a protein.</p> <p>Specifically, the fast marching method (FMM) has been used to find the minimum energy path (MEP) on the potential energy surface (PES) for small gas-phase reactions. In this thesis, FMM is shown to be one of the most general and reliable surface-walking algorithms for finding the MEP. However, it is an expensive method. Some improvements have been illustrated in chapter 2 and chapter 3.</p> <p>I also proposed a new method (called QSM-NT) for finding all stationary points, accordingly all alternative reaction paths on the PES. Unlike other path-finding methods, QSM-NT overcomes the need of an initial guess of the path, and it can find all stationary points on the PES. QSM-NT has been proven to be efficient and reliable through applications on analytical PES and real chemical reaction. The difficulties and pitfalls associated with QSM-NT have been elucidated with examples.</p> <p>Molecular dynamic (MD) simulation and associated postprocessing procedures have been used to study the binding properties of caffeine-A<sub>2A</sub> complex. The binding affinities of different binding modes have been calculated using MM/PBSA method. The binding pocket has been characterised with MM/GBSA energy decomposition. Our computational work provides significant insight to the targeted drug design of the adenosine A<sub>2A</sub> receptor.</p> <p>The pH-dependent properties of a protein play important roles in the fundamental biological processes. The protonation states, namely, the pK<sub>a</sub> values of ionisable residues, especially active-site residues are the prerequisites to understanding of the mechanisms of many biological processes. In this thesis, acetoacetate decarboxylase (AADase) is used as a test case for studying different types of pK<sub>a</sub> prediction methods. Our computational results have shown that the site-site interactions from other ionisable residues are crucial to the pK<sub>a</sub> prediction of the target residue.</p> <p>This thesis covers the range from small gas phase reaction prediction to large complex biological systems characterisation using quantum mechanical and molecular mechanical methods.</p> / Doctor of Philosophy (PhD)
302

Effects of caffeine on potassium currents in isolated rat ventricular myocytes

Hussain, Munir, Chorvatova, A. 14 July 2009 (has links)
No / Rapid exposure of cardiac muscle to high concentrations of caffeine releases Ca 2+ from the sarcoplasmic reticulum (SR). This Ca 2+ is then extruded from the cell by the Na +/Ca 2+ exchanger. Measurement of the current carried by the exchanger ( I Na/Ca) can therefore be used to estimate of the Ca 2+ content of the SR. Previous studies have shown that caffeine, however, can also inhibit K + currents. We therefore investigated whether the inhibitory effects of caffeine on these currents could contaminate measurements of I Na/Ca. Caffeine caused partial inhibition of the inward rectifier K + current ( I K1): the outward current at ¿40 mV was 1.15±0.24 pA/pF in control and decreased to 0.34±0.15 pA/pF in the presence of 10 mmol/l caffeine ( P<0.05, n=15). This was similar to the effect of caffeine on the holding current observed at ¿40 mV in the absence of K + channel block and could therefore account for the contaminating effects of caffeine observed during measurements of I Na/Ca. Moreover, caffeine also partially inhibited the transient outward ( I to) and the delayed rectifier ( I K) K + currents.
303

Thermal and in situ x-ray diffraction analysis of a dimorphic co-crystal 1:1 caffeine-glutaric acid

Vangala, Venu R., Chow, P.S., Schreyer, M., Lau, G., Tan, R.B.H. 23 December 2015 (has links)
Yes / Spurred by the enormous interest in co-crystals from the pharmaceutical industry, many novel co-crystals of active pharmaceutical ingredients have been discovered in recent years and this has in turn led to an increasing number of reports on polymorphs of co-crystals. Hence, a thorough characterization and understanding of co-crystal polymorphs is a valuable step during drug development. The purpose of this study is to perform in situ structural analysis and to determine thermodynamic stability of a dimorphic co-crystal system, 1:1 caffeine-glutaric acid (CA-GA, Forms I and II). We performed thermal and structural characterizations by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), hot-stage microscopy (HSM), slurry and in situ variable temperature X-ray diffraction (VTXRD). For completeness, we have also re-determined crystal structures of CA-GA Forms I and II at 180 K using single crystal X-ray diffraction. Our results revealed that Form II is stable and Form I is metastable at ambient conditions. Further, the results suggest that the dimorphs are enantiotropically related and the transition temperature is estimated to be 79 Celcius degrees. / This work was supported by Science and Engineering Research Council of A*STAR (Agency for Science, Technology and Research), Singapore.
304

Coformer Replacement as an Indicator for Thermodynamic Instability of Cocrystals: Competitive Transformation of Caffeine:Dicarboxylic Acid

Alsirawan, M.H.D. Bashir, Vangala, Venu R., Kendrick, John, Leusen, Frank J.J., Paradkar, Anant R 11 May 2016 (has links)
Yes / The thermodynamic stability of caffeine (CA) cocrystals with dicarboxylic acids (DAs) as coformers was investigated in the presence of a range of structurally related dicarboxylic acids (SRDs). Two experimental conditions (slurry and dry-grinding) were studied for mixing the cocrystal and the SRD additive. The additives oxalic, malonic and glutaric acid led to the replacement of the acid coformer for certain cocrystals. Interestingly, a change in stoichiometry was observed for the CA:maleic acid system. A stability order among the cocrystals was established depending on their tendency to replace the coformer. To understand the factors controlling the relative stabilities, lattice energies were calculated using dispersion corrected Density Functional Theory (DFT). Gibbs free energy changes were calculated from experimental solubilities. The observed stability order corroborated well with lattice energy and Gibbs free energy computations.
305

Structural Basis for Mechanical Anisotropy in Polymorphs of Caffeine-Glutaric Acid Cocrystal

Mishra, M.K., Mishra, K., Narayan, Aditya N., Reddy, C.M., Vangala, Venu R. 16 September 2020 (has links)
Yes / Insights into structure–mechanical property correlations in molecular and multicomponent crystals have recently attracted significant attention owing to their practical applications in the pharmaceutical and specialty fine chemicals manufacturing. In this contribution, we systematically examine the mechanical properties of dimorphic forms, Forms I and II of 1:1 caffeine-glutaric acid cocrystal on multiple faces using nanoindentation to fully understand their mechanical anisotropy and mechanical stability under applied load. Higher hardness, H, and elastic modulus, E, of stable Form II has been rationalized based on its corrugated layers, higher interlayer energy, lower interlayer separation, and presence of more intermolecular interactions in the crystal structure compared to metastable Form I. Our results show that mechanical anisotropy in both polymorphs arises due to the difference in orientation of the same 2D structural features, namely the number of possible slip systems, and strength of the intermolecular interactions with respect to the indentation direction. The mechanical properties results suggest that 1:1 caffeine-glutaric acid cocrystal, metastable form (Form I) could be a suitable candidate with desired tablet performance to that of stable Form II. The overall, it demonstrates that the multiple faces of nanoindentation is critical to determine mechanical anisotropy and structure- mechanical property correlation. Further, the structural-mechanical property correlations aids in the selection of the best solid phase for macroscopic pharmaceutical formulation.
306

Effect of polymerisation by microwave on the physical properties of molecularly imprinted polymers (MIPs) specific for caffeine

Brahmbhatt, H.A., Surtees, Alexander P.H., Tierney, C., Ige, O.A., Piletska, E.V., Swift, Thomas, Turner, N.W. 14 October 2020 (has links)
Yes / Molecularly Imprinted Polymers (MIPs) are a class of polymeric materials that exhibit highly specific recognition properties towards a chosen target. These “smart materials” offer robustness to work in extreme environmental conditions and cost effectiveness; and have shown themselves capable of the affinities/specificities observed of their biomolecular counterparts. Despite this, in many MIP systems heterogeneity generated in the polymerisation process is known to affect the performance. Microwave reactors have been extensively studied in organic chemistry because they can afford fast and well-controlled reactions, and have been used for polymerisation reactions; however, their use for creating MIPs is limited. Here we report a case study of a model MIP system imprinted for caffeine, using microwave initiation. Experimental parameters such as polymerisation time, temperature and applied microwave power have been investigated and compared with polymers prepared by oven and UV irradiation. MIPs have been characterised by BET, SEM, DSC, TGA, NMR, and HPLC for their physical properties and analyte recognition performance. The results suggest that the performance of these polymers correlates to their physical characteristics. These characteristics were significantly influenced by changes in the experimental polymerisation parameters, and the complexity of the component mixture. A series of trends were observed as each parameter was altered, suggesting that the performance of a generated polymer could be possible to predict. As expected, component selection is shown to be a major factor in the success of an imprint using this method, but this also has a significant effect on the quality of resultant polymers suggesting that only certain types of MIPs can be made using microwave irradiation. This work also indicates that the controlled polymerisation conditions offered by microwave reactors could open a promising future in the development of MIPs with more predictable analyte recognition performance, assuming material selection lends itself to this type of initiation. / DMU School of Pharmacy undergraduate project scheme for financial support.
307

In situ monitoring of competitive coformer exchange reaction by 1H MAS Solid-state NMR

Hareendran, C., Alsirawan, B., Paradkar, Anant R, Ajithku, T.G.am 23 February 2024 (has links)
Yes / In a competitive coformer exchange reaction, a recent topic of interest in pharmaceutical research, the coformer in a pharmaceutical cocrystal is exchanged with another coformer which is expected to form a cocrystal that is more stable. There will be a competition between coformers to form the most stable product through formation of hydrogen bonds. Thus, to monitor each and every step of such reactions, employing a very sensitive technique is crucial. 1H nuclear magnetic resonance (NMR) is a very powerful technique that is very sensitive to the hydrogen bond interactions. In this study, an in situ monitoring of a coformer exchange reaction is carried out by 1H magic angle spinning (MAS) solid-state NMR (SSNMR) at a spinning frequency of 60 KHz. The changes in caffeine maleic acid cocrystals on addition of glutaric acid, and caffeine glutaric cocrystal on addition of maleic acid were monitored. In all the reactions, it has been observed that caffeine glutaric acid Form I is formed. When glutaric acid was added to 2:1 caffeine maleic acid, the formation of metastable 1:1 caffeine glutaric acid Form I was observed, at the start of the experiment, indicating that the centrifugal pressure is enough for the formation. The difference in the end product of the reactions with similar reaction pathway of 1:1 and 2:1 reactant stoichiometry indicate that a complete replacement of maleic acid has only occurred only in the 1:1 stoichiometry of the reactants. The polymorphic transition of caffeine glutaric acid Form II to Form I at higher temperature was crucial reason which triggers the exchange of glutaric acid with maleic acid in the reaction of caffeine glutaric acid and maleic acid. Based on these results, new reaction pathways in competitive coformer exchange reactions could be distinguished, and the remarkable role of stoichiometry, polymorphism, temperature and centrifugal pressure could be established. / C.H. acknowledges Department of Science and Technology, India (DST), for the grant of Inspire Fellowship. T.G.A. acknowledges Council of Scientific and Industrial Research, India (CSIR) for research grants under the 12th 5 year plan project (Grant No. CSC0405). / The full-text of this article will be released for public view at the end of the publisher embargo on 19 Feb 2025.
308

Stoichiometric control of co-crystal formation by solvent free continuous co-crystallization (SFCC).

Kulkarni, Chaitrali S., Wood, Clive, Kelly, Adrian L., Gough, Tim, Blagden, Nicholas, Paradkar, Anant R 29 October 2015 (has links)
Yes / Reproducible control of stoichiometry and difficulties in large scale production have been identified as two of the major challenges to commercial uptake of pharmaceutical co-crystals. The aim of this research was to extend the application of SFCC to control stoichiometry in caffeine: maleic acid co-crystals. Both 1:1 and 2:1 caffeine: maleic acid co-crystals were produced by control of the feedstock composition and process conditions. It was also observed that formation of 2:1 stoichiometry co-crystals involved formation of a 1:1 co-crystal which was subsequently transformed to 2:1 co-crystals. The investigation of stoichiometric transformation revealed that although 1:1 co-crystals could be converted into 2:1 form with addition of excess caffeine, the reverse was not possible in the presence of excess maleic acid. However, conversion from 2:1 into 1:1 was only achieved by melt seeding with the phase pure 1:1 co-crystals. This investigation demonstrates that stoichiometric control can be achieved by SFCC by control of parameters such as extrusion temperature.
309

The synthesis and evaluation of phenoxymethylcaffeine analogues as inhibitors of monoamine oxidase / Braam Swanepoel

Swanepoel, Abraham Johannes January 2010 (has links)
Purpose: Monoamine oxidase (MAO) plays a key role in the treatment of Parkinson‟s disease (PD), since it is the major enzyme responsible for the catabolism of dopamine in the substantia nigra of the brain. Inhibition of MAO-B may conserve dopamine in the brain and provide symptomatic relief. The MAO-B inhibitors that are currently used for the treatment of PD, are associated with a variety of adverse effects (psychotoxic and cardiovascular effects) along with additional disadvantages such as irreversible inhibition of the enzyme. Irreversible inhibition may be considered a disadvantage, since following treatment with irreversible inhibitors, the rate by which the enzyme activity is recovered may be variable and may require several weeks. In contrast, following the administration of reversible inhibitors, enzyme activity is recovered when the inhibitor is cleared from the tissues. There exists therefore, a need to develop new reversible inhibitors of MAO-B which are considered to be safer than irreversible MAO-B inhibitors. Rationale: Recently discovered reversible MAO-B inhibitors include safinamide and (E)-8-(3-chlorostyryl)caffeine (CSC). Safinamide has a benzyloxy side chain, which is thought to be important for inhibition of MAO-B. CSC, on the other hand, consists of a caffeine moiety with a styryl substituent at C-8, which is also a critical feature for its inhibitory activity. In a previous study, the caffeine ring and the benzyloxy side chain were combined to produce a series of 8-benzyloxycaffeine analogues which proved to be potent new MAO-B inhibitors. In this study, caffeine was substituted with the phenoxymethyl functional group at C-8, instead of the benzyloxy moiety. The aim of this study was therefore to compare the MAO-B inhibition potencies of selected 8-(phenoxymethyl)caffeine analogues with the previously studied 8-benzyloxycaffeine analogues. In the current study, 8-(phenoxymethyl)caffeine (1) and nine 8-(phenoxymethyl)caffeine analogues (2-10) were synthesized and evaluated as inhibitors of recombinant human MAOA and –B. These analogues only differed in substitution on C3 and C4 of the phenoxymethyl phenyl ring. The substituents that were selected were halogens (Cl, F, and Br), the methyl group, the methoxy group and the trifluoromethyl group. These substituents are similar to those selected in a previous study where 8-benzyloxycaffeine analogues were evaluated as MAO inhibitors. This study therefore explores the effect that a variety of substituents on C3 and C4 of the phenoxymethyl phenyl ring will have on the MAO-A and –B inhibition potencies of 8-(phenoxymethyl)caffeine. Based on the results, additional 8-(phenoxymethyl)caffeine analogues with improved MAO-A and –B inhibition potencies will be proposed for investigation in future studies. Methods: The target, 8-(phenoxymethyl)caffeine, analogues were synthesized by reacting 1,3- dimethyl-5,6-diaminouracil with the appropriately substituted phenoxyacetic acid in the presence of a carbodiimide coupling agent. Ring closure was catalyzed in basic conditions and methylation of the resulting theophyline intermediates at C-7 was carried out with iodomethane. The structures and purities of all the target compounds were verified by NMR, MS and HPLC analysis. All of the 8-(phenoxymethyl)caffeine analogues were subsequently evaluated as MAO-A and –B inhibitors using the recombinant human enzymes. The inhibition potencies of the analogues were expressed as the IC50 values (concentration of the inhibitor that produces 50% inhibition). In addition, the time-dependency of inhibition of both MAO-A and –B was evaluated for two inhibitors in order to determine if these inhibitors interact reversibly or irreversibly with the MAO isozymes. A Hansch-type quantitative structure-activity relationship (QSAR) study was carried out in order to quantify the effect that different substituents on the phenyl ring of the 8-(phenoxymethyl)caffeine analogues have on MAO-B inhibition activity. Results: The results showed that among the test compounds, several analogues potently inhibited human MAO-B. The most potent inhibitor was 8-(3-bromophenoxymethyl)caffeine with an IC50 value of 0.148 μM toward human MAO-B. There were also inhibitors which displayed inhibition activities towards human MAO-A with IC50 values ranging from 4.59 μM to 34.0 μM. Compared to the 8-benzyloxycaffeine analogues, that were in general non-selective inhibitors, the 8-(phenoxymethyl)caffeine analogues, evaluated here, were selective for MAO-B. For example, 8-(3-bromophenoxymethyl)caffeine was found to be 141 fold more selective as an inhibitor of MAO-B than of MAO-A. Also, compared to the 8-benzyloxycaffeine analogues, the 8-(phenoxymethyl)caffeine analogues were slightly less potent MAO-B inhibitors. For example, 8-benzyloxycaffeine is reported to have an IC50 value of 1.77 μM for the inhibition of human MAO-B while 8-(phenoxymethyl)caffeine was found to have an IC50 value of 5.78 μM for the inhibition of human MAO-B. This study also shows that two selected analogues bind reversibly to MAO-A and –B, respectively, and that the mode of MAO-B inhibition is competitive for one representative compound. Qualitative inspection of the results revealed interesting structure-activity relationships. For the 8-(phenoxymethyl)caffeine analogues, bearing both the C3 and C4 substituents on the phenyl ring, the MAO-B activity significantly increases with halogen substitution. Furthermore, increased MAO-B inhibition was observed with increased electronegativity of the halogen substituent. To quantify these apparent relationships, a Hansch-type QSAR study was carried out. The results showed that the logarithm of the IC50 values (logIC50) correlated with Hansch lipophilicity (π) and the Swain-Lupton electronic (F) constants of the substituents at C-3 of the phenoxymethyl ring. The correlation exhibited an R2 value of 0.87 and a statistical F value of 13.6. From these results it may be concluded that electron-withdrawing substituents at C3 with a high degree of lipophilicity enhance MAO-B inhibition potency. These results are similar to those previously obtained for the series of 8-benzyloxycaffeine analogues. For this series, the MAO-B inhibition potencies correlated with the Hansch lipophilicity (π) and Hammett electronic (σ) constants of the substituents at C-3 of the benzyloxy ring. Similarly to the 8-(phenoxymethyl)caffeine analogues, electron-withdrawing substituents with a high degree of lipophilicity also enhance the MAO-B inhibition potencies of 8-benzyloxycaffeine analogues. / Thesis (M.Sc. (Pharmaceutical Chemistry))--North-West University, Potchefstroom Campus, 2011
310

The synthesis and evaluation of phenoxymethylcaffeine analogues as inhibitors of monoamine oxidase / Braam Swanepoel

Swanepoel, Abraham Johannes January 2010 (has links)
Purpose: Monoamine oxidase (MAO) plays a key role in the treatment of Parkinson‟s disease (PD), since it is the major enzyme responsible for the catabolism of dopamine in the substantia nigra of the brain. Inhibition of MAO-B may conserve dopamine in the brain and provide symptomatic relief. The MAO-B inhibitors that are currently used for the treatment of PD, are associated with a variety of adverse effects (psychotoxic and cardiovascular effects) along with additional disadvantages such as irreversible inhibition of the enzyme. Irreversible inhibition may be considered a disadvantage, since following treatment with irreversible inhibitors, the rate by which the enzyme activity is recovered may be variable and may require several weeks. In contrast, following the administration of reversible inhibitors, enzyme activity is recovered when the inhibitor is cleared from the tissues. There exists therefore, a need to develop new reversible inhibitors of MAO-B which are considered to be safer than irreversible MAO-B inhibitors. Rationale: Recently discovered reversible MAO-B inhibitors include safinamide and (E)-8-(3-chlorostyryl)caffeine (CSC). Safinamide has a benzyloxy side chain, which is thought to be important for inhibition of MAO-B. CSC, on the other hand, consists of a caffeine moiety with a styryl substituent at C-8, which is also a critical feature for its inhibitory activity. In a previous study, the caffeine ring and the benzyloxy side chain were combined to produce a series of 8-benzyloxycaffeine analogues which proved to be potent new MAO-B inhibitors. In this study, caffeine was substituted with the phenoxymethyl functional group at C-8, instead of the benzyloxy moiety. The aim of this study was therefore to compare the MAO-B inhibition potencies of selected 8-(phenoxymethyl)caffeine analogues with the previously studied 8-benzyloxycaffeine analogues. In the current study, 8-(phenoxymethyl)caffeine (1) and nine 8-(phenoxymethyl)caffeine analogues (2-10) were synthesized and evaluated as inhibitors of recombinant human MAOA and –B. These analogues only differed in substitution on C3 and C4 of the phenoxymethyl phenyl ring. The substituents that were selected were halogens (Cl, F, and Br), the methyl group, the methoxy group and the trifluoromethyl group. These substituents are similar to those selected in a previous study where 8-benzyloxycaffeine analogues were evaluated as MAO inhibitors. This study therefore explores the effect that a variety of substituents on C3 and C4 of the phenoxymethyl phenyl ring will have on the MAO-A and –B inhibition potencies of 8-(phenoxymethyl)caffeine. Based on the results, additional 8-(phenoxymethyl)caffeine analogues with improved MAO-A and –B inhibition potencies will be proposed for investigation in future studies. Methods: The target, 8-(phenoxymethyl)caffeine, analogues were synthesized by reacting 1,3- dimethyl-5,6-diaminouracil with the appropriately substituted phenoxyacetic acid in the presence of a carbodiimide coupling agent. Ring closure was catalyzed in basic conditions and methylation of the resulting theophyline intermediates at C-7 was carried out with iodomethane. The structures and purities of all the target compounds were verified by NMR, MS and HPLC analysis. All of the 8-(phenoxymethyl)caffeine analogues were subsequently evaluated as MAO-A and –B inhibitors using the recombinant human enzymes. The inhibition potencies of the analogues were expressed as the IC50 values (concentration of the inhibitor that produces 50% inhibition). In addition, the time-dependency of inhibition of both MAO-A and –B was evaluated for two inhibitors in order to determine if these inhibitors interact reversibly or irreversibly with the MAO isozymes. A Hansch-type quantitative structure-activity relationship (QSAR) study was carried out in order to quantify the effect that different substituents on the phenyl ring of the 8-(phenoxymethyl)caffeine analogues have on MAO-B inhibition activity. Results: The results showed that among the test compounds, several analogues potently inhibited human MAO-B. The most potent inhibitor was 8-(3-bromophenoxymethyl)caffeine with an IC50 value of 0.148 μM toward human MAO-B. There were also inhibitors which displayed inhibition activities towards human MAO-A with IC50 values ranging from 4.59 μM to 34.0 μM. Compared to the 8-benzyloxycaffeine analogues, that were in general non-selective inhibitors, the 8-(phenoxymethyl)caffeine analogues, evaluated here, were selective for MAO-B. For example, 8-(3-bromophenoxymethyl)caffeine was found to be 141 fold more selective as an inhibitor of MAO-B than of MAO-A. Also, compared to the 8-benzyloxycaffeine analogues, the 8-(phenoxymethyl)caffeine analogues were slightly less potent MAO-B inhibitors. For example, 8-benzyloxycaffeine is reported to have an IC50 value of 1.77 μM for the inhibition of human MAO-B while 8-(phenoxymethyl)caffeine was found to have an IC50 value of 5.78 μM for the inhibition of human MAO-B. This study also shows that two selected analogues bind reversibly to MAO-A and –B, respectively, and that the mode of MAO-B inhibition is competitive for one representative compound. Qualitative inspection of the results revealed interesting structure-activity relationships. For the 8-(phenoxymethyl)caffeine analogues, bearing both the C3 and C4 substituents on the phenyl ring, the MAO-B activity significantly increases with halogen substitution. Furthermore, increased MAO-B inhibition was observed with increased electronegativity of the halogen substituent. To quantify these apparent relationships, a Hansch-type QSAR study was carried out. The results showed that the logarithm of the IC50 values (logIC50) correlated with Hansch lipophilicity (π) and the Swain-Lupton electronic (F) constants of the substituents at C-3 of the phenoxymethyl ring. The correlation exhibited an R2 value of 0.87 and a statistical F value of 13.6. From these results it may be concluded that electron-withdrawing substituents at C3 with a high degree of lipophilicity enhance MAO-B inhibition potency. These results are similar to those previously obtained for the series of 8-benzyloxycaffeine analogues. For this series, the MAO-B inhibition potencies correlated with the Hansch lipophilicity (π) and Hammett electronic (σ) constants of the substituents at C-3 of the benzyloxy ring. Similarly to the 8-(phenoxymethyl)caffeine analogues, electron-withdrawing substituents with a high degree of lipophilicity also enhance the MAO-B inhibition potencies of 8-benzyloxycaffeine analogues. / Thesis (M.Sc. (Pharmaceutical Chemistry))--North-West University, Potchefstroom Campus, 2011

Page generated in 0.0587 seconds