• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 10
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanical Regulation of Apoptosis and Calcification within Valvular Interstitial Cells

Cirka, Heather Ann 28 April 2016 (has links)
Calcific aortic valvular disease (CAVD) is the most common valvular pathology in the developed world. CAVD results in calcifications forming on the aortic valve leaflets, inhibiting proper closure and causing complications of stenosis and regurgitation. Although, the mechanisms behind the disease initiation are unknown, it is believed to be a cell-mediated phenomenon, and not the result of passive degradation of the valve as once believed due to the increased prevalence with age. Currently, there are no pharmaceutical options for the prevention or reversal of calcifications, the only treatment option is complete valve replacement, an imperfect solution. Hindering the development of potential therapeutics is that currently there are no adequate animal models which replicate the calcification and cell death seen in disease explanted valves. An in vitro model has been develop where valvular interstitial cells (VICs), the main cell type of the valve, are seeded at high density into tissue culture polystyrene dishes and cultured with TGF-β1. This results in VICs activating to the myofibroblast phenotype and forming cell aggregates. Due to currently unknown mechanisms, apoptosis occurs within the center of the aggregates and calcification ensues. Although simplistic, this model has been used to show that rate and frequency of aggregation is affected by cellular tension; conditions of high tension increase aggregation response, while conditions of low tension prevent aggregation and calcification from occurring. It is important to note; however, that despite its wide usage, the current model is limited as the aggregation and subsequent calcification are random occurrences and are not consistent across literature where same conditions for control samples are used. The motivation of the presented work is two-fold. First, high intracellular tension has been suggested as one of the mechanisms leading to disease in the valve. Despite the clear and important role of cell tension, VIC tension has never before been measured in a dynamic environment. The ways in which dynamic stimulation affects individual VIC tension is not known. In aim one, a method is developed to allow for long-term cyclic stretch of VICs with measurement of cell traction force. It was found that cyclic stretch decreased cell tension in cells with high prestress and increased cell tension for conditions of low prestress. Combined, these findings indicate a homeostatic cellular tension which is dependent upon the mechanical environment. In the second aim, a novel method for creating VIC aggregates is validated. Micro-contact printing, essentially “stampingâ€� of a protein in a defined pattern, is used to create circular aggregates on polyacrylamide gels. This method allows for the separation of the aggregation from the subsequent calcification, an improvement over the current in vitro model. The method is then used to explore the role of the distribution of tension in the initiation of disease
2

Investigating the role of matrix vesicles during aortic valve interstitial cell calcification

Cui Lin, Lin January 2018 (has links)
Vascular calcification is a prominent cardiovascular condition found worldwide. This condition is predominantly found in the elderly population, and patients who suffer from chronic kidney disease, due to an imbalance of serum phosphate and calcium levels. For many years, vascular calcification was believed to be a passive pathological process which develops with ageing and/or lifestyle. Little has been documented about the disease until the 20th century, when interest in cardiovascular research grew amongst scientists. Indeed, vascular calcification underpins severe clinical outcomes and cardiovascular diseases have been labelled the global leading cause of death. Calcific aortic valve diseases (CAVD) is a progressive degenerative condition characterised by the development of lipo-calcification around the aortic valve leaflets leading to severe aortic stenosis and aortic regurgitation, which may ultimately lead to heart failure. At present there are no pharmaceutical therapies that can stop its progression and its molecular mechanisms are not fully understood. Recent findings have suggested that vascular smooth muscle cell (VSMC) calcification shares many common features with physiological skeletogenesis via the release of matrix vesicles (MVs), which are specialised structures that initiate mineralisation during bone formation. The ability for MVs to nucleate calcium and phosphate highly depend on their protein composition, as this may vary depending on active cell signalling and the microenvironment. This mechanism involving MV-regulated calcification has yet to be examined in CAVD. In this study, examined whether calcium and/or phosphate regulate VIC-derived MVs to induce calcification in the aortic valve. I used a primary rat valve interstitial cell (VIC) model, coupled with stenotic human valve tissues to characterise and study the mechanisms underpinning CAVD. X-ray fluorescence and diffraction analysis showed the mineral found in calcified human aortic valves to be hydroxyapatite (HA), the main component in bone. Additional imaging studies employing transmission electron microscopy (TEM) revealed particles that were similar in size and morphology to skeletal MVs. To further characterise VIC-derived MVs in vitro, I harvested MVs from rat VICs, and subsequently studied their protein composition using Isobaric tag for relative and absolute quantitation (iTRAQ) mass spectrometry. The data obtained from the proteomics analysis was compared to previous published studies on MV proteins derived from osteoblasts and VSMCs. The results showed the upregulation of numerous calcification regulators in MVs isolated from all 3 cell types, in particular, the Annexin family, which are known calcium binding proteins. Further studies conducted with Annexin 6, an established calcium regulator in arterial calcification, revealed its colocalisation with MV-enriched areas in calcified human aortic valve tissue suggesting it may play an important role in calcium regulation during CAVD.
3

In vitro simulation of calcific aortic valve disease in three-dimensional bioprinted models

Wu, Pin-Jou 14 July 2017 (has links)
BACKGROUND: Calcific aortic valve disease (CAVD) is the most prevalent heart valve disease in the developed world, claiming almost 17,000 deaths annually in the United States. The lack of noninvasive therapeutics to slow or halt the disease warrants the need for further understanding of the pathobiological mechanisms of CAVD. A tri-laminar structure of aortic valve determines the biomechanical properties of its leaflets. Valvular endothelial cells (VECs) and interstitial cells (VICs) are responsible for valve structural integrity. Traditional two-dimensional culture conditions spontaneously activate the pathological differentiation of VICs making in vitro studies challenging. A monolayered three-dimensional (3D) hydrogel platform was recently developed as a novel in vitro culture system to study the phenotypic changes of VICs leading to microcalcification (early stages of calcification). This system, however, did not fully recapitulate the microenvironment of native valve tissues because of the lack of individual layer representations and endothelial coverage. Bioprinting technology, which allows precise and integrated positioning of cells, matrix, and biomolecules, may provide an innovative approach toward building a more biologically relevant 3D culture platform. OBJECTIVE: This study aims to lay the groundwork for building a multilayered 3D-bioprinted culture platform to study CAVD by first validating the use of bioprinting in monolayered cell-laden 3D hydrogel constructs. METHODS: Human VICs were isolated from patients undergoing valve replacement surgeries at Brigham and Women’s Hospital (Boston, MA) according to Institutional Review Board (IRB) protocols. VICs were expanded in culture medium containing growth factors for up to 6 passages and then encapsulated in hydrogels using 3D bioprinting technology. After encapsulation, VIC-laden 3D constructs were cultured in either normal or osteogenic conditions for 21 days. Microcalcification, cell proliferation, and cell apoptosis were evaluated using fluorescent staining and confocal microscopy. Results were compared with results from VIC-laden hydrogels made manually. RESULTS: An increase in microcalcification was observed throughout bioprinted VIC-laden hydrogel constructs cultured in osteogenic conditions for 21 days, whereas normal conditions developed negligible calcification signals. Cell proliferation and apoptosis were not significantly different between normal and osteogenic groups in bioprinted hydrogels. Cell-free hydrogels did not exhibit any microcalcification. Overall, bioprinted hydrogels showed less nonspecific background staining than handmade hydrogels, thus providing a better means for quantitative assessments of 3D culture platforms. CONCLUSION: Based on bioprinting technology, an improved monolayered cell-laden hydrogel platform was successfully established as a first step toward building an in vitro multilayered disease model for studying the pathobiological mechanisms of CAVD. The results in this study were consistent with current literature that proposes calcification as a cell-dependent, apoptotic-independent, and proliferation-independent pathway. / 2019-07-13T00:00:00Z
4

Effekte körperlichen Trainings auf eine präexistente Aortenklappensklerose im Tiermodell

Schlotter, Florian 19 December 2012 (has links) (PDF)
Bisher existiert keine nicht-invasive/ nicht-operative Therapie der Aortenklappenstenose. Als wichtiger Zeitpunkt für eine präventive Maßnahme, zur Verhinderung der Ausbildung einer hömodynamisch relevanten Aortenklappenstenose, kann das Stadium der Aortenklappensklerose angesehen werden. Dieses frühe Erkrankungsstadium verfügt über zahlreiche pathophysiologische Parallelen zur Atherosklerose, für die eine positive Rolle der Prävention durch körperliche Aktivität erwiesen ist. Ziel dieser Arbeit war die Durchführung der Sekundärprävention der kalzifizierenden Aortenklappenerkrankung durch körperliches Training. Um mögliche Effekte dieser Intervention zu eruieren, wurden LDLR-/--Mäuse mit bereits bestehenden pathologischen Aortenklappenveränderungen über einen Zeitraum von 16 Wochen körperlichem Training unterzogen. Durch morphologische, serumanalytische, immunhistochemische und Genexpressionsanalysen konnte abschließend eine Quantifizierung der Effekte körperlichen Trainings - in der Zielsetzung der Sekundärprävention - realisiert werden.
5

Towards Understanding the Biomechanical Etiology of Calcific Aortic Valve Disease

Oba, Ryan Walton 06 December 2018 (has links)
No description available.
6

Pathology of Calcific Aortic Valve Disease: The Role of Mechanical and Biochemical Stimuli in Modulating the Phenotype of and Calcification by Valvular Interstitial Cells

Yip, Cindy Ying Yin 16 March 2011 (has links)
Calcific aortic valve disease (CAVD) occurs through multiple mutually non-exclusive mechanisms that are mediated by valvular interstitial cells (VICs). VICs undergo pathological differentiation during the progression of valve calcification; however the factors that regulate cellular differentiation are not well defined. Most commonly recognized are biochemical factors that induce pathological differentiation, but little is known regarding the biochemical factors that may suppress this process. Further, the contribution of matrix mechanics in valve pathology has been overlooked, despite increasing evidence of close relationships between changes in tissue mechanics, disease progression and the regulation of cellular response. In this thesis, the effect of matrix stiffness on the differentiation of and calcification by VICs in response to pro-calcific and anti-calcific biochemical factors was investigated. Matrix stiffness modulated the response of VICs to pro-calcific factors, leading to two distinct calcification processes. VICs cultured on the more compliant matrices underwent calcification via osteoblast differentiation, whereas those cultured on the stiffer matrices were prone to myofibroblast differentiation. The transition of fibroblastic VICs to myofibroblasts increased cellular contractility, which led to contraction-mediated, apoptosis-dependent calcification. In addition, C-type natriuretic peptide (CNP), a putative protective molecule against CAVD, was identified. CNP supressed myofibroblast and osteoblast differentiation of VICs, and thereby inhibited calcification in vitro. Matrix stiffness modulated the expression of CNP-regulated transcripts, with only a small number of CNP-regulated transcripts not being sensitive to matrix mechanics. These data demonstrate the combined effects of mechanical and biochemical cues in defining VIC phenotype and responses, with implications for the interpretation of in vitro models of VIC calcification and possibly disease devleopment. The findings from this thesis emphasize the necessity to consider both biochemical and mechanical factors in order to improve fundamental understanding of VIC biology.
7

Pathology of Calcific Aortic Valve Disease: The Role of Mechanical and Biochemical Stimuli in Modulating the Phenotype of and Calcification by Valvular Interstitial Cells

Yip, Cindy Ying Yin 16 March 2011 (has links)
Calcific aortic valve disease (CAVD) occurs through multiple mutually non-exclusive mechanisms that are mediated by valvular interstitial cells (VICs). VICs undergo pathological differentiation during the progression of valve calcification; however the factors that regulate cellular differentiation are not well defined. Most commonly recognized are biochemical factors that induce pathological differentiation, but little is known regarding the biochemical factors that may suppress this process. Further, the contribution of matrix mechanics in valve pathology has been overlooked, despite increasing evidence of close relationships between changes in tissue mechanics, disease progression and the regulation of cellular response. In this thesis, the effect of matrix stiffness on the differentiation of and calcification by VICs in response to pro-calcific and anti-calcific biochemical factors was investigated. Matrix stiffness modulated the response of VICs to pro-calcific factors, leading to two distinct calcification processes. VICs cultured on the more compliant matrices underwent calcification via osteoblast differentiation, whereas those cultured on the stiffer matrices were prone to myofibroblast differentiation. The transition of fibroblastic VICs to myofibroblasts increased cellular contractility, which led to contraction-mediated, apoptosis-dependent calcification. In addition, C-type natriuretic peptide (CNP), a putative protective molecule against CAVD, was identified. CNP supressed myofibroblast and osteoblast differentiation of VICs, and thereby inhibited calcification in vitro. Matrix stiffness modulated the expression of CNP-regulated transcripts, with only a small number of CNP-regulated transcripts not being sensitive to matrix mechanics. These data demonstrate the combined effects of mechanical and biochemical cues in defining VIC phenotype and responses, with implications for the interpretation of in vitro models of VIC calcification and possibly disease devleopment. The findings from this thesis emphasize the necessity to consider both biochemical and mechanical factors in order to improve fundamental understanding of VIC biology.
8

Effekte körperlichen Trainings auf eine präexistente Aortenklappensklerose im Tiermodell

Schlotter, Florian 31 May 2012 (has links)
Bisher existiert keine nicht-invasive/ nicht-operative Therapie der Aortenklappenstenose. Als wichtiger Zeitpunkt für eine präventive Maßnahme, zur Verhinderung der Ausbildung einer hömodynamisch relevanten Aortenklappenstenose, kann das Stadium der Aortenklappensklerose angesehen werden. Dieses frühe Erkrankungsstadium verfügt über zahlreiche pathophysiologische Parallelen zur Atherosklerose, für die eine positive Rolle der Prävention durch körperliche Aktivität erwiesen ist. Ziel dieser Arbeit war die Durchführung der Sekundärprävention der kalzifizierenden Aortenklappenerkrankung durch körperliches Training. Um mögliche Effekte dieser Intervention zu eruieren, wurden LDLR-/--Mäuse mit bereits bestehenden pathologischen Aortenklappenveränderungen über einen Zeitraum von 16 Wochen körperlichem Training unterzogen. Durch morphologische, serumanalytische, immunhistochemische und Genexpressionsanalysen konnte abschließend eine Quantifizierung der Effekte körperlichen Trainings - in der Zielsetzung der Sekundärprävention - realisiert werden.
9

BMP Signaling and Intersecting Molecular Mechanisms in Calcific Aortic Valve Disease

Gomez Stallons, Maria V. January 2016 (has links)
No description available.
10

Pathogenesis of calcific aortic valve disease

Näpänkangas, J. (Juha) 08 October 2019 (has links)
Abstract Calcific aortic valve disease (CAVD) represents a disease spectrum, ranging from mild aortic valve sclerosis to severe obstructive aortic stenosis (AS), associated with a high risk of myocardial infarction and cardiovascular death. It is a common disease in the Western countries, and with their aging populations, its prevalence is likely to increase. Today, CAVD is recognized as an actively regulated disease. Mechanical stress and endothelial injury are the initiating factors, followed by lipid accumulation and oxidation, leading to inflammation, fibrosis and calcification. Ultimately, the progressive calcification hinders the normal valvular function and obstructs the flow of blood through the valve. The only effective treatment for symptomatic AS is aortic valve replacement. The trials with pharmacological treatments, mainly with anti-atherosclerotic drugs, have not been successful in slowing the progression of the disease. This study was aimed to identify differentially expressed transcripts, and molecular markers taking part in the pathophysiology behind CAVD. In particular, factors related to the renin-angiotensin system, and the apelin – APJ pathway, were investigated during the development of CAVD. In addition, the expressions of granzymes and perforin, as well as podoplanin, were studied in different stages of CAVD. It was demonstrated that these molecules are expressed in aortic valves and dysregulated in AS. These results can help to clarify the mechanisms driving CAVD, thus being potential targets for pharmacological therapy. Furthermore, the studied molecules may reflect the stage and possible subgroups of CAVD. / Tiivistelmä Aorttaläpän ahtauma edustaa tautijatkumoa, joka alkaa lievästä aorttaläpän paksuuntumisesta eli aorttaskleroosista ja jatkuu vaikeaan aorttaläpän kalkkeutuneeseen ahtaumaan eli aorttastenoosiin, johon liittyy korkea sydäninfarktin ja sydän- ja verisuonitatutiperäisen kuoleman riski. Aorttaläpän ahtauma on yleinen tauti länsimaissa, ja väestön ikääntyessä sen esiintyvyys on luultavimmin lisääntymässä. Nykyään aorttaläpän ahtauman tiedetään olevan aktiivisesti säädelty tauti. Mekaaninen rasitus ja endoteelivaurio käynnistävät tautiprosessin, läppäkudokseen kertyy lipidejä ja ne hapettuvat, mikä johtaa tulehdukseen, sidekudoksen lisääntymiseen ja kalkkeutumiseen. Lopulta etenevä kalkkeutuminen heikentää läpän normaalia toimintaa ja estää veren normaalia virtausta sydämestä aorttaan. Ainoa tehokas hoito oireiseen aorttastenoosiin on aorttaläpän korvausleikkaus. Lääkehoitoina on kokeiltu erityisesti ateroskleroosin hoitoon käytettäviä lääkkeitä, mutta niillä ei ole onnistuttu estämään taudin etenemistä. Tässä väitöskirjatyössä tutkittiin molekyylejä ja biokemiallisia reittejä, jotka liittyvät reniini-angiotensiinijärjestelmään ja apeliini-APJ-reittiin. Lisäksi tutkittiin grantsyymien ja perforiinin sekä podoplaniinin ilmentymistä aorttaläpän ahtauman eri kehitysvaiheissa. Tulosten perusteella näitä tekijöitä ilmennetään aorttaläpässä ja niiden määrä on muuttunut kalkkeutuneessa läpässä. Tulokset auttavat osaltaan ymmärtämään aorttaläpän ahtaumaan ja kalkkeutumiseen johtavia mekanismeja, joita voidaan hyödyntää uusia lääkehoidon kohteita suunniteltaessa. Tutkitut molekulaariset tekijät voivat kuvastaa aortan ahtaumataudin vaiheita ja mahdollisia alaryhmiä.

Page generated in 0.0988 seconds