• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Application of the generalized rank annihilation method (GRAM) to second-order liquid chromatographic data

Comas Lou, Enric 23 February 2005 (has links)
Les mesures analítiques i els instruments que les generen poden classificar-se en funció del numero de dades que s'obtenen al mesurar una mostra. Si s'obté una matriu de respostes, s'anomenen dades d'ordre dos.En aquesta tesi es van utilitzar els dades d'ordre dos, obtingudes mitjançant un cromatògraf líquid d'alta resolució amb un detector de diodes en fila (DAD).L'instrument HPLC-DAD és força comú. Tot i això, normalment, per determinar la concentració dels analits d'interès no s'utilitzen totes les dades enregistrades per l'instrument. El mode espectral només s'utilitza per identificar els analits o per verificar la puresa dels pics, mentre que l'àrea o l'alçada del pic s'utilitza per quantificar mitjançant calibratge univariant. Aquesta manera de treballar és molt útil sempre i quan la resposta mesurada sigui selectiva per l'analit d'interès.En analitzar contaminants ambientals en mostres complexes, com poden ser mostres d'aigua de riu, no és senzill obtenir mesures selectives. Quan les respostes no son selectives, els mètodes de calibratge de segon ordre (els que utilitzen dades de segon ordre) es poden utlitzar per a quantificar l'analit d'interès.La present tesi es basa en l'estudi de les propietats del mètode de calibratge de segon ordre Generalized Rank Annihilation Method (GRAM). Aquest mètode fou desenvolupat a mitjans de la dècada dels 80, i té unes propietats molt atractives:1) Per a determinar la concentració de l'analit d'interès en una mostra test només cal una mostra de calibratge o estàndard.2) No calen mesures selectives, amb la qual cosa el temps de la separació es pot reduir de manera considerable.Tot i això, el GRAM té una sèrie de limitacions que fan que no s'apliqui de manera rutinària. L'objectiu de la tesi és estudiar els avantatges i les limitacions del GRAM i millorar els aspectes necessaris per a què és pugui aplicar de manera rutinària.Per emprar GRAM les dades experimentals han de complir una sèrie de requisits matemàtics: (i) la resposta mesurada ha de ser suma de respostes corresponents als diferents analits i (ii) la resposta d'un analit ha de ser proporcional en les diferents mostres: l'analit ha d'eluir exactament al mateix temps de retenció tant en l'estàndard com en la mostra test. Si aquest requisit no es compleix, les prediccions del GRAM son esbiaixades.S'han desenvolupat fórmules de superar aquestes dificultats. S'ha desenvolupat un mètode per alienar pics cromatogràfics, basat en un mètode de resolució de corbes (Iterative Target Transformation Factor Analysis, ITTFA). En sistemes HPLC-DAD, és força habitual que els pics de l'analit d'interès elueixin a diferents temps de retenció.Les diferencies no son gaire grans (pocs segons) però poden ser suficients per fer que els resultats del GRAM siguin incorrectes.El GRAM és un mètode basat en factors, i cal introduir aquest paràmetre per a calcular un model. S'ha desenvolupat un mètode gràfic per a triar el nombre de factors que s'utilitzen per calcular el model GRAM. Està basat en un paràmetre de l'algorisme GRAM (á).Finalment s'ha desenvolupat un criteri per a determinar mostres discrepants (outliers).El criteri desenvolupat per detectar outliers està basat en el Senyal Analític Net (NAS).Tot l'esmentat anteriorment, s'ha aplicat a casos reals, en concret a l'anàlisi de naftalensulfonats i de contaminats polars presents en mostres d'aigua, tant de riu com de depuradora. Així s'ha pogut demostrar la utilitat del GRAM a la cromatografia, i comparar el GRAM amb altres mètodes de calibratge de segon ordre com el PARAFAC i MCR-ALS. Es va trobar que tots tres mètodes produïen resultats comparables. / Analytical measurements and the instruments that generate them can be classified regarding the number of data that are obtained when a sample is measured. When a matrix of response is obtained, it is known as second-order data.In this thesis, second-order data were used, obtained from a high performance liquid chromatography (HPLC) couple with a diode array detector (DAD). This instrument is quite common in the analytical laboratories. However, the concentration of the analytes of interest is normally found without using all the measured data. The spectral model only is used to identify the analytes of for verifying the peak purity, whereas the area or the height of the peak is used to quantify using univariate calibration. This is a very useful strategy. However, the measured response must be selective to the analyte of interest.When environmental pollutants were analyzed, like water samples, it is no so easy to get selective measurements. When the responses are not selective, the analyte on interest can still be quantified by using second-order calibration methods, which are the methods that use second-order data.This thesis is based on the study of the properties of the second-order calibration method Generalized Rank Annihilation Method (GRAM).This method was developed in the mid eighties and has very attractive properties:1) To determine the concentration of the analyte of interest in a test sample, it is only necessary one calibration sample or standard.2) Selective measurements are not necessary, implying the reduce of the separation time.Despite these advantages, GRAM has some limitations which make that it is not applied routinely. The objectives of the thesis are to study the advantages and limitations of GRAM and improve the negative points in order to apply GRAM routinely.To use GRAM the experimental data must accomplish some mathematical requirements: (i) the measured response must be result of the addition due to the different analytes in the peak and (ii) the response of the analyte must be proportional in the different samples: the analyte of interest must elute at the same retention time both in the calibration and in the test sample. When these conditions are not met, the GRAM predictions are biased.Mathematical algorithms have been developed to overcome such difficulties. An algorithm to align chromatographic peaks has been developed, based on curve resolution method (Iterative Target Transformation Factor Analysis, ITTFA). In HPLCDAD systems is quite often that the peaks of the analyte of interest elute at different retention time in the calibration and in the test sample. Even the differences are not big (few seconds), they can be enough to make the GRAM results incorrect.GRAM is a factor based calibration method, and the number of factors has to be introduced as an input to build a GRAM method. A graphical criterion has been selected to determine the number the number of factors, which is base on the use of a parameter of the GRAM algorithm (á).Finally, a criterion to detect outlying samples has been developed, which is based on the Net Analyte Signal (NAS).All the above commented were applied to real cases. Specifically to the analysis of aromatic sulfonates and polar pollutants in water form river samples and waste water plants. We were able to show the applicability of GRAM and to compare GRAM with other second-order calibration methods, such as PARAFAC i MCR-ALS. We found that the three methods provided comparable results.
2

Experimental design applied to the selection of samples and sensors in multivariate calibration

Ferré Baldrich, Joan 24 February 1998 (has links)
Els models de calibratge multivariant relacionen respostes instrumentals (per exemple, espectres) d'un conjunt de mostres de calibratge amb quantitats de variables físiques o químiques tals com concentració d'analit, o índexs (per exemple, el nombre d'octà en gasolines). Aquesta relació es fa servir per predir aquestes quantitats a partir de les respostes instrumentals de noves mostres desconegudes, mesurades de la mateixa manera. La predicció emprant models de calibratge multivariants està esdevenint un pas comú en els procediments analítics. Per tant, l'habilitat del model de donar prediccions precises i no esbiaixades té una influència decisiva en la qualitat del resultat analític. És important que les mostres de calibratge i els sensors es triïn adequadament de manera que els models pugin representar adequadament el fenomen en estudi i assegurar la qualitat de les prediccions. En aquesta tesi s'ha estudiat la selecció de mostres de calibratge d'un a llista de mostres candidates en regressió sobre components principals (PCR) i la selecció de longituds d'ona en el model de mínims quadrats clàssics (CLS). El fonament l'ha donat la teoria del disseny estadístic d'experiments. En PCR, el nombre mínim de mostres de calibratge es tria emprant les respostes instrumentals de les mostres candidates. La concentració d'analit només cal determinar-la en les mostres seleccionades. S'han proposat diferents usos del criteri d'optimalitat D.En CLS, s'han interpretat diferents criteris per la selecció de longituds d'ona des del punt de vista de l'el·lipsoide de confiança de les concentracions predites. Els criteris també s'han revisat de manera crítica d'acord amb el seu efecte en la precisió, exactitud i veracitat (que s'han revisat d'acord amb les definicions ISO). Basat en la teoria del disseny d'experiments, s'han donat les regles per a la selecció de sensors. A demés, s'ha proposat un nou mètode per a detectar i reduir el biaix en les prediccions de noves mostres predites mitjançant CLS. Conclusions1. Criteris d'optimalitat del disseny d'experiment en MLR s'han aplicat per triar longituds d'ona de calibratge en CLS i el nombre mínim de mostres de calibratge en MLR i PCR a partir de les respostes instrumentals o scores de components principals d'una llista de candidats. Aquests criteris són un alternativa a (i/o complementen) el criteri subjectiu de l'experimentador. Els models construïts amb els punts triats per aquests criteris tenen una menor variància dels coeficients o concentracions i una millor habilitat de predicció que els models construïts amb mostres triades aleatòriament.2. El criteri D s'ha emprat amb èxit per triar mostres de calibratge en PCR i MLR, per triar un grup reduït de mostres per a comprovar la validesa de models de PCR abans d'estandarditzar-los i per triar longituds d'ona en CLS a partir de la matriu de sensibilitats. Les mostres de calibratge que són D òptimes generalment donen models de PCR i MLR amb una millor habilitat de predicció que quan les mostres de calibratge es trien aleatòriament o emprant l'algorisme de Kennard-Stone 3. Cal emprar algorismes d'optimització per trobar, els subconjunts de I punts òptims entre una llista de N candidats. En aquest treball es van emprar els algorismes de Fedorov, de Kennard-Stone i algorismes genètics.4. L'el·lipsoide de confiança de les concentracions estimades i la teoria del disseny d'experiments proporcionen el marc per interpretar l'efecte dels sensors triats amb aquests criteris en els resultats de predicció del model i per definir noves regles per triar longituds d'ona. 5. L'eficàcia dels criteris de selecció en CLS basats en la matriu de calibratge necessiten que no hi hagi biaix en la resposta dels sensors triats. La qualitat de les dades s'ha de comprovar abans de que s'empri el mètode de selecció de longituds d'ona. 6. La senyal analítica neta (NAS) és important pera comprendre el procés de quantificació en CLS i la propagació dels errors a les concentracions predites. S'han emprat diagnòstics tals com la sensibilitat, selectivitat i el gràfic de regressió del senyal analític net (NASRP), que es basen en el NAS d'un analit particular. S'ha vist que la norma del NAS està relacionada amb l'error de predicció. 7. El NASRP és una eina per a detectar gràficament si la resposta mesurada de la mostra desconeguda segueix el model calculat. La concentració estimada és el pendent de la recta ajustada als punts de gràfic. plot. Els sensors amb biaix es poden detectar i els sensors que segueixen el model es poden triar emprant la funció indicador d'Error i un mètode de finestres mòbils. / Multivariate calibration models relate instrumental responses (e.g. spectra) of a set of calibration samples to the quantities of chemical or physical variables such as analyte concentrations, or indexes (e.g. octane number in fuels). This relationship is used to predict these quantities from the instrumental response data of new unknown samples measured in the same manner. Prediction using multivariate calibration models is becoming one common step in the analytical procedure. Therefore, the ability of the model to give precise and unbiased predictions has a decisive influence on the quality of the analytical result. It is important that the calibration samples and sensors be carefully selected so that the models can properly represent the phenomenon under study and assure the quality of the predictions.We have studied the selection of calibration samples from the list of all the available samples in principal component regression (PCR) and the selection of wavelengths in classical least squares (CLS). The underlying basis has been given by experimental design theory. In PCR, the minimum number of calibration samples are selected using the instrumental responses of the candidate samples. The analyte concentration is only determined in the selected samples. Different uses of the D-criterion have also been proposed.In CLS, different criteria for wavelength selection have been interpreted from the point of view of the experimental design using the confidence hyperellipsoid of the predicted concentrations. The criteria have also been critically reviewed according to their effect on precision, accuracy and trueness (which are revised following ISO definitions). Based on the experimental design theory, new guidelines for sensor selection have been given. Moreover, a new method for detecting and reducing bias in unknown samples to be analyzed using CLS.Conclusions1. Optimality criteria derived from experimental design in MLR have been applied to select calibration wavelengths in CLS and the minimum number of calibration samples in MLR and PCR from the instrumental responses or principal component scores of a list of candidates. These criteria are an alternative (and/or a complement) to the experimenter's subjective criterion. The models built with the points selected with the proposed criteria had a smaller variance of the coefficients or concentrations and better predictive ability than the models built with the samples selected randomly 2. The D-criterion has been successfully used for selecting calibration samples in PCR and MLR, for selecting a reduced set of samples to assess the validity of PCR models before standardization and for selecting wavelengths in CLS from the matrix of sensitivities. D optimal calibration samples generally give PCR and MLR models with a better predictive ability than calibration samples selected randomly or using the Kennard-Stone algorithm. 3. Optimization algorithms are needed to find the optimal subsets of I points from a list of N candidates. Fedorov's algorithm, Kennard-Stone algorithm and Genetic Algorithms were studied here. 4. The confidence ellipsoid of the estimated concentrations and the experimental design theory provide the framework for interpreting the effect of the sensors selected with these criteria on the prediction results of the model and for deriving new guidelines for wavelength selection. 5. The efficacy of the selection criteria in CLS based on the calibration matrix requires there to be no bias in the response at the selected sensors. The quality of the data must be checked before a wavelength selection method is used. 6. The net analyte signal (NAS) is important to understand the quantification process in CLS and the propagation of errors to the predicted concentrations. Diagnostics such as sensitivity, selectivity and net analyte signal regression plots (NASRP) which are based on the NAS for each particular analyte have been used. The norm of the NAS has been found to be related to the prediction error . 7. The NASRP is a tool for graphically detecting whether the measured response of the unknown sample follows the calculated model. The estimated concentration is the slope of the straight line fitted to the points in this plot. The sensors with bias can be detected and the sensors that best follow the model can be selected using the Error Indicator function and a moving window method.
3

Límits de detecció en l'anàlisi multivariant

Boqué Martí, Ricard 28 April 1997 (has links)
La normativa internacional referent a la qualitat en els laboratoris d'anàlisi estableix que un mètode analític, abans de poder ser utilitzat com a mètode de rutina, ha d'estar validat. S'entén com a validació l'establiment de que els paràmetres de qualitat associats a un mètode compleixen els requeriments especificats per a una aplicació analítica determinada. Dins els paràmetres de qualitat importants es troba el límit de detecció (LDD).Els mètodes analítics que utilitzen tècniques capaces de generar dades multivariants són cada vegada més habituals i és, per tant, important el derivar-ne els paràmetres de qualitat associats. En la present Tesi Doctoral es va abordar l'estudi dels límits de detecció. En el primer capítol es presenta una evolució històrica del concepte de LDD, amb les diferents aproximacions per al seu càlcul en mètodes d'anàlisi que utilitzen el calibratge univariant. També es descriuen els diferents factors que influeixen en el càlcul del LDD. Les diferents tècniques d'anàlisi multivariant existents, junt amb els diversos models matemàtics utilitzats, ha fet que s'hagin desenvolupat diferents aproximacions al càlcul dels LDD multivariants. En el segon capítol es revisen críticament aquestes aproximacions. En el tercer capítol es presenta una aproximació per calcular el LDD a unes dades obtingudes mitjançant l'acoblament cromatografia de gasos-espectrometria de masses, que es basa en l'ús de la recta de calibratge dels scores del primer component principal (obtinguts per descomposició mitjançant anàlisi de components principals de la matriu de respostes original) respecte les concentracions dels patrons de calibratge. Aquest mètode és aplicable només en absència de substàncies interferents i quan el primer component principal explica un percentatge molt elevat de la informació continguda en les dades originals. Per tal de solucionar aquesta limitació, es va procedir a desenvolupar un estimador del LDD aplicat a models directes de calibratge multivariant, on les respostes es modelen en funció de les concentracions. En aquests models, l'etapa de calibratge pot dur-se a terme a partir de mostres consistents en els analits purs o mostres consistents en mescles dels diferents analits. Els estimadors derivats per ambdós casos, juntament amb una aplicació a dades reals, configuren el quart capítol.Els mètodes de calibratge basats en els models directes tenen l'inconvenient que cal conèixer les concentracions de totes les substàncies que produeixen senyal o, almenys, cal disposar dels espectres dels analits i els interferents purs. Aquesta condició no és la més habitual en els laboratoris, on la majoria de mostres analitzades són matrius complexes, de composició parcialment desconeguda, i en les quals sovint només interessa determinar un analit en concret. Amb aquests tipus de mostres s'ha de recórrer als models inversos, en els quals la concentració d'analit es modela en funció de la resposta obtinguda. Aquests models tenen l'avantatge que només cal conèixer la concentració de l'analit d'interès per construir el model de calibratge. Es va derivar un mètode de càlcul dels LDD per a models inversos de calibratge multivariant i que pogués servir per un ventall més ampli de mostres reals (mediambientals, alimentàries,...). En un primer treball, l'estimador del LDD es calcula a partir dels intervals de confiança del model de calibratge multivariant. En una segona aproximació, l'estimador es basa en la teoria dels tests d'hipòtesi i utilitza la incertesa de les concentracions predites. Aquests continguts, juntament amb les aplicacions a dades reals, són els que conformen el capítol cinquè.Finalment, a les conclusions es discuteixen els avantatges i les limitacions dels estimadors presentats i es donen una sèrie de pautes de com s'ha d'enfocar l'estudi de la seva millora en futurs treballs. Com a perspectiva de futur, es proposa l'aplicació dels coneixements adquirits al desenvolupament d'estimadors de càlcul del LDD en mètodes d'anàlisi que utilitzen el calibratge de segon ordre. / Limits of detection in multivariate analysisInternational norms concerning the quality of analytical laboratories establish that an analytical method, before being used as a routine method, has to be validated. Validation is defined as the process of verifying that a method is fit for purpose, that is, suitable for its intended use. Among the important performance parameters in method validation, there is the limit of detection (LOD).Analytical methods that use techniques capable of generating multivariate data are more and more frequent. It is therefore important to derive their associated performance parameters. In this Doctoral Thesis we have focused on the study of the LODs. In the first chapter, the historical evolution of the concept of LOD is presented, together with the different approaches to calculate it in analytical methods using univariate calibration. The different factors affecting the calculation of the LOD are also described.. The different existing techniques of multivariate analysis, together with the various mathematical models used, have motivated the development of different approaches for calculating multivariate LODs. In the second chapter all the approaches developed so far are critically reviewed. In chapter 3 an approach is presented to calculate the LOD to data obtained from a hyphenated technique, gas chromatography-mass spectrometry. The approach is based on the use of the calibration line of the scores of the first principal component (obtained by principal component analysis decomposition of the original response matrix) versus the concentrations of the calibration standards. This approach is only applicable if interfering substances are not present and when the first principal component explains a very high percentage of the information in the original data. To overcome this limitation, a LOD estimator was developed to be applied to multivariate calibration using the direct model, in which the responses are modelled as a function of the concentrations. In these models, the calibration step can be carried out either from standards consistent on the pure analytes or standards consistent on mixtures of the different analytes. The LOD estimators derived for both cases, together with an application to real data, constitute the contents of chapter 4.Calibration methods based on the direct model have a big disadvantage: the concentrations of all the analytes contributing to the response or, at least, the spectra of pure analytes and interfering substances, must be known. This condition is seldom met in analytical laboratories, where most of the samples analysed are complex and have composition partially unknown. Also, usually only one specific analyte wants to be determined. With this type of samples one has to resort to multivariate calibration using the inverse model, in which the concentration of the analyte is modelled as a function of the response measured. Inverse models have the advantage that only the concentration of the analyte of interest needs to be known in the calibration samples when building the calibration model. An estimator was derived to calculate the LOD for multivariate calibration using the inverse model, applicable to a wider range of real samples (environmental, foodstuffs,...). In a first work, the LOD estimator is calculated from the confidence intervals of the multivariate calibration model. In a second approach, the estimator is based on the theory of hypothesis testing and uses the uncertainty of the predicted concentrations. These approaches, together with the applications to real data, are included in chapter 5.Finally, in the conclusions, the advantages and limitations of the developed LOD estimators are discussed and a series of guidelines are given on how to improve the LOD estimators in future works. As prospect research, the development of LOD estimators is suggested for analytical methods that generate second-order data.
4

Limit of detection for second-order calibration methods

Rodríguez Cuesta, Mª José 02 June 2006 (has links)
Analytical chemistry can be split into two main types, qualitative and quantitative. Most modern analytical chemistry is quantitative. Popular sensitivity to health issues is aroused by the mountains of government regulations that use science to, for instance, provide public health information to prevent disease caused by harmful exposure to toxic substances. The concept of the minimum amount of an analyte or compound that can be detected or analysed appears in many of these regulations (for example, to discard the presence of traces of toxic substances in foodstuffs) generally as a part of method validation aimed at reliably evaluating the validity of the measurements.The lowest quantity of a substance that can be distinguished from the absence of that substance (a blank value) is called the detection limit or limit of detection (LOD). Traditionally, in the context of simple measurements where the instrumental signal only depends on the amount of analyte, a multiple of the blank value is taken to calculate the LOD (traditionally, the blank value plus three times the standard deviation of the measurement). However, the increasing complexity of the data that analytical instruments can provide for incoming samples leads to situations in which the LOD cannot be calculated as reliably as before.Measurements, instruments and mathematical models can be classified according to the type of data they use. Tensorial theory provides a unified language that is useful for describing the chemical measurements, analytical instruments and calibration methods. Instruments that generate two-dimensional arrays of data are second-order instruments. A typical example is a spectrofluorometer, which provides a set of emission spectra obtained at different excitation wavelengths.The calibration methods used with each type of data have different features and complexity. In this thesis, the most commonly used calibration methods are reviewed, from zero-order (or univariate) to second-order (or multi-linears) calibration models. Second-order calibration models are treated in details since they have been applied in the thesis.Concretely, the following methods are described:- PARAFAC (Parallel Factor Analysis)- ITTFA (Iterative Target Transformation Analysis)- MCR-ALS (Multivariate Curve Resolution-Alternating Least Squares)- N-PLS (Multi-linear Partial Least Squares)Analytical methods should be validated. The validation process typically starts by defining the scope of the analytical procedure, which includes the matrix, target analyte(s), analytical technique and intended purpose. The next step is to identify the performance characteristics that must be validated, which may depend on the purpose of the procedure, and the experiments for determining them. Finally, validation results should be documented, reviewed and maintained (if not, the procedure should be revalidated) as long as the procedure is applied in routine work.The figures of merit of a chemical analytical process are 'those quantifiable terms which may indicate the extent of quality of the process. They include those terms that are closely related to the method and to the analyte (sensitivity, selectivity, limit of detection, limit of quantification, ...) and those which are concerned with the final results (traceability, uncertainty and representativity) (Inczédy et al., 1998). The aim of this thesis is to develop theoretical and practical strategies for calculating the limit of detection for complex analytical situations. Specifically, I focus on second-order calibration methods, i.e. when a matrix of data is available for each sample.The methods most often used for making detection decisions are based on statistical hypothesis testing and involve a choice between two hypotheses about the sample. The first hypothesis is the "null hypothesis": the sample is analyte-free. The second hypothesis is the "alternative hypothesis": the sample is not analyte-free. In the hypothesis test there are two possible types of decision errors. An error of the first type occurs when the signal for an analyte-free sample exceeds the critical value, leading one to conclude incorrectly that the sample contains a positive amount of the analyte. This type of error is sometimes called a "false positive". An error of the second type occurs if one concludes that a sample does not contain the analyte when it actually does and it is known as a "false negative". In zero-order calibration, this hypothesis test is applied to the confidence intervals of the calibration model to estimate the LOD as proposed by Hubaux and Vos (A. Hubaux, G. Vos, Anal. Chem. 42: 849-855, 1970).One strategy for estimating multivariate limits of detection is to transform the multivariate model into a univariate one. This strategy has been applied in this thesis in three practical applications:1. LOD for PARAFAC (Parallel Factor Analysis).2. LOD for ITTFA (Iterative Target Transformation Factor Analysis).3. LOD for MCR-ALS (Multivariate Curve Resolution - Alternating Least Squares)In addition, the thesis includes a theoretical contribution with the proposal of a sample-dependent LOD in the context of multivariate (PLS) and multi-linear (N-PLS) Partial Least Squares. / La Química Analítica es pot dividir en dos tipus d'anàlisis, l'anàlisi quantitativa i l'anàlisi qualitativa. La gran part de la química analítica moderna és quantitativa i fins i tot els govern fan ús d'aquesta ciència per establir regulacions que controlen, per exemple, nivells d'exposició a substàncies tòxiques que poden afectar la salut pública. El concepte de mínima quantitat d'un analit o component que es pot detectar apareix en moltes d'aquestes regulacions, en general com una part de la validació dels mètodes per tal de garantir la qualitat i la validesa dels resultats.La mínima quantitat d'una substància que pot ser diferenciada de l'absència d'aquesta substància (el que es coneix com un blanc) s'anomena límit de detecció (limit of detection, LOD). En procediments on es treballa amb mesures analítiques que són degudes només a la quantitat d'analit present a la mostra (situació d'ordre zero) el LOD es pot calcular com un múltiple de la mesura del blanc (tradicionalment, 3 vegades la desviació d'aquesta mesura). Tanmateix, l'evolució dels instruments analítics i la complexitat creixent de les dades que generen, porta a situacions en les que el LOD no es pot calcular fiablement d'una forma tan senzilla. Les mesures, els instruments i els models de calibratge es poden classificar en funció del tipus de dades que utilitzen. La Teoria Tensorial s'ha utilitzat en aquesta tesi per fer aquesta classificació amb un llenguatge útil i unificat. Els instruments que generen dades en dues dimensions s'anomenen instruments de segon ordre i un exemple típic és l'espectrofluorímetre d'excitació-emissió, que proporciona un conjunt d'espectres d'emissió obtinguts a diferents longituds d'ona d'excitació.Els mètodes de calibratge emprats amb cada tipus de dades tenen diferents característiques i complexitat. En aquesta tesi, es fa una revisió dels models de calibratge més habituals d'ordre zero (univariants), de primer ordre (multivariants) i de segon ordre (multilinears). Els mètodes de segon ordre estan tractats amb més detall donat que són els que s'han emprat en les aplicacions pràctiques portades a terme. Concretament es descriuen:- PARAFAC (Parallel Factor Analysis)- ITTFA (Iterative Target Transformation Analysis)- MCR-ALS (Multivariate Curve Resolution-Alternating Least Squares)- N-PLS (Multi-linear Partial Least Squares)Com s'ha avançat al principi, els mètodes analítics s'han de validar. El procés de validació inclou la definició dels límits d'aplicació del procediment analític (des del tipus de mostres o matrius fins l'analit o components d'interès, la tècnica analítica i l'objectiu del procediment). La següent etapa consisteix en identificar i estimar els paràmetres de qualitat (figures of merit, FOM) que s'han de validar per, finalment, documentar els resultats de la validació i mantenir-los mentre sigui aplicable el procediment descrit.Algunes FOM dels processos químics de mesura són: sensibilitat, selectivitat, límit de detecció, exactitud, precisió, etc. L'objectiu principal d'aquesta tesi és desenvolupar estratègies teòriques i pràctiques per calcular el límit de detecció per problemes analítics complexos. Concretament, està centrat en els mètodes de calibratge que treballen amb dades de segon ordre.Els mètodes més emprats per definir criteris de detecció estan basats en proves d'hipòtesis i impliquen una elecció entre dues hipòtesis sobre la mostra. La primera hipòtesi és la hipòtesi nul·la: a la mostra no hi ha analit. La segona hipòtesis és la hipòtesis alternativa: a la mostra hi ha analit. En aquest context, hi ha dos tipus d'errors en la decisió. L'error de primer tipus té lloc quan es determina que la mostra conté analit quan no en té i la probabilitat de cometre l'error de primer tipus s'anomena fals positiu. L'error de segon tipus té lloc quan es determina que la mostra no conté analit quan en realitat si en conté i la probabilitat d'aquest error s'anomena fals negatiu. En calibratges d'ordre zero, aquesta prova d'hipòtesi s'aplica als intervals de confiança de la recta de calibratge per calcular el LOD mitjançant les fórmules d'Hubaux i Vos (A. Hubaux, G. Vos, Anal. Chem. 42: 849-855, 1970)Una estratègia per a calcular límits de detecció quan es treballa amb dades de segon ordre es transformar el model multivariant en un model univariant. Aquesta estratègia s'ha fet servir en la tesi en tres aplicacions diferents::1. LOD per PARAFAC (Parallel Factor Analysis).2. LOD per ITTFA (Iterative Target Transformation Factor Analysis).3. LOD per MCR-ALS (Multivariate Curve Resolution - Alternating Least Squares)A més, la tesi inclou una contribució teòrica amb la proposta d'un LOD que és específic per cada mostra, en el context del mètode multivariant PLS i del multilinear N-PLS.

Page generated in 0.3027 seconds