• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contrôle de l'épaisseur de gelée dans les réacteurs métallurgiques à haute température à l'aide d'un capteur virtuel

Lebreux, Marc January 2011 (has links)
Au Québec, les producteurs d'aluminium consomment 12% de la puissance totale installée d'Hydro-Québec. Dans un contexte où le prix de l'énergie est en constante progression, les alumineries font donc face à des défis énergétiques de taille ; de plus, la production d'émissions de gaz à effet de serre étant directement reliée à la consommation d'énergie, des défis environnementaux importants s'annoncent pour le futur. Pour répondre à ces défis, une des avenues envisagées concerne la couche de gelée qui est présente dans chacune des cuves d'électrolyse d'aluminium. La couche de gelée a une importance capitale dans le procédé de fabrication d'aluminium, car elle sert de barrière protectrice aux parois réfractaires contre le bain électrolytique très corrosif à haute température. Elle permet également de minimiser les courants horizontaux à l'intérieur de la cuve, ce qui assure sa stabilité magnéto-hydrodynamique et permet d'optimiser l'efficacité de courant du procédé. La méthode traditionnelle pour mesurer le profil de gelée dans une cuve se fait manuellement à l'aide d'une sonde mécanique, mais cette opération nécessite beaucoup de temps ainsi que du personnel qualifié. De plus, ces mesures sont réalisées à une faible fréquence, et nécessitent l'ouverture du capot, ce qui libère beaucoup de chaleur et d'émissions chimiques dans l'atmosphère. Pour pallier aux désavantages de la méthode traditionnelle, ce travail présente le développement d'une méthode inverse (capteur virtuel) qui permet d'estimer en continu, et de manière non-instrusive [i.e. non-intrusive], l'épaisseur de gelée à partir de mesures thermiques (température et/ou flux de chaleur) provenant de capteurs situés dans les parois latérales de la cuve d'électrolyse. Le capteur virtuel est composé d'un filtre de Kalman et d'un estimateur récursif aux moindres-carrés, et il est combiné à une procédure d'identification du procédé en modèles d'état. Cette approche est appliquée pour la première fois dans la résolution d'un problème inverse avec changement de phase et en utilisant des capteurs de flux de chaleur. Parce que pour les alumineries, l'intérêt et le réel défi consistent plutôt à contrôler l'épaisseur de gelée, le capteur virtuel est ensuite combiné à un algorithme de contrôle qui régule le système de refroidissement des parois latérales de la cuve d'électrolyse. Ceci permet alors de contrôler à sa guise l'épaisseur de gelée malgré les perturbations thermiques inhérentes au procédé. La stratégie de contrôle retenue consiste en un contrôleur classique proportionnel-intégral-dérivatif, largement utilisé en industrie. Le capteur virtuel et l'algorithme de contrôle sont ensuite validés pour des conditions d'opérations typiques présentes dans les réacteurs métallurgiques à haute température. Les résultats montrent que la différence entre l'épaisseur réelle de gelée et celle prédite avec le capteur virtuel demeure dans tous les cas inférieure à 5%, tandis que la stratégie de contrôle demeure stable pour chacune des conditions d'opération, assure une erreur nulle en régime permanent ainsi qu'aucun dépassement de consigne, et procure une erreur maximale de 1 x 10[indice supérieur -3] m sur le suivi de la consigne de l'épaisseur de gelée. Pour répondre simultanément à la problématique d'estimation et de contrôle de l'épaisseur de gelée, le présent travail nécessite donc la combinaison de plusieurs domaines traditionnellement séparés (modélisation, transfert de chaleur, identification, méthodes inverses, contrôle) et cette procédure est appliquée pour la première fois dans le procédé d'électrolyse d'aluminium.
2

Induction rapide, contrôlée par capteur de température virtuel, d'une hypothermie en ventilation liquidienne totale

Nadeau, Mathieu January 2013 (has links)
L'hypothermie thérapeutique modérée (HTM) consiste à abaisser la température corporelle d'un patient entre 32 et 34 °C. Cette méthode a prouvé ses vertus thérapeutiques pour la neuroprotection et la cardioprotection lors d'insultes hypoxiques ou ischémiques en empêchant les cellules touchées d'entrer en apoptose. La ventilation liquidienne totale (VLT) consiste à assurer les échanges gazeux dans les poumons à l'aide d'un liquide, typiquement des perfluorocarbones (PFC). Un ventilateur liquidien se charge ventiler le patient par un renouvellement cyclique de PFC oxygéné et à température contrôlée. La VLT, utilisant les PFC comme fluides caloporteurs et le poumon comme échangeur thermique, permet une induction d'HTM ultra rapide. Cependant, il n'existe encore aucun ventilateur liquidien avec une fonction automatisée d'induction rapide d'HTM par VLT. L'équipe Inolivent de l'Université de Sherbrooke possède la technologie de respirateur liquidien la plus évoluée au monde. Le but du présent projet est d'équiper le respirateur INOLIVENT-5.0 d'une fonction automatisée d'induction d'HTM et d'un contrôle de la température corporelle. Un capteur virtuel de la température du patient en fonction de la température du PFC expiré a été développé. Un système d'échangeur de chaleur bidirectionnel permettant de refroidir et de chauffer le PFC a été conçu et implanté. Le système d'échangeur de chaleur et le circuit de PFC ont été modélisés mathématiquement. Deux modèles par compartiments du poumon comme échangeur thermique en VLT sur des agneaux nouveau-nés et des lapins adultes ont pu être développés à l'aide de la littérature et d'expérimentations animales. A la suite de la validation in vivo du capteur virtuel de température et des modèles mathématiques, les contrôleurs de températures corporelles ont été conçus. Les contrôles pour l'induction rapide d'HTM par VLT ont été mis en place pour atteindre rapidement l'HTM, tout en assurant que la température du coeur ne descende pas sous 30°C, prévenant ainsi les arythmies cardiaques. Des contrôles différents ont dû être mis en place dépendamment si l'HTM est induite au départ de la VLT ou lors d'une VLT normotherme. De plus, un régulateur de la température corporelle a été conçu pour permettre des réchauffements progressifs à taux prescrits par l'utilisateur. Finalement, le capteur virtuel et les différents contrôleurs ont été validés sur 7 agneaux nouveau-nés à l'animalerie du Centre Hospitalier Universitaire de Sherbrooke (Canada) et sur 7 lapins adultes dans les laboratoires de l'École Nationale Vétérinaire d'Alfort (France). Le capteur virtuel et les contrôleurs fonctionnent correctement sur le modèle ovin et répondent aux spécifications fixées. Dans le cas du modèle lapin, les fréquences respiratoires et les volumes courants étant plus faibles que sur l'agneau, un biais apparaît au capteur virtuel et l'HTM est plus longue à atteindre, mais plusieurs pistes d'amélioration sont proposées.
3

Estimation de paramètres de vol avion et détection de pannes capteurs / Aircraft flight parameters estimation and sensor fault detection

Alcalay, Guillaume 28 September 2018 (has links)
L'objectif est de cette thèse est de développer, de tester puis d'implémenter des schémas de surveillance et d'estimation des paramètres essentiels aux pilotes et aux lois embarquées, offrant ainsi une alternative et un complément aux signaux mesures par les capteurs. Les méthodes développées au cours de la thèse ont donc plusieurs finalités applicatives : estimer les états avion ainsi que des paramètres externes (comme le vent et les erreurs de modélisation), détecter la défaillance d'un ou plusieurs capteurs lorsqu'un dysfonctionnement se produit, et enfin s'adapter à cette dégradation de manière à continuer à délivrer des estimées exploitables par les systèmes sur un horizon temporel plus ou moins long.D'un point de vue pratique, dans le domaine de la détection, on cherchera à ce que le processus de détection d'une panne soit capable : 1) de distinguer une faute sur les sondes d'incidence d'une faute sur le paramètre de vitesse conventionnelle ou d’une erreur sur la masse renseignée par le pilote dès le début du vol. Une faute sur un de ces paramètres est aujourd'hui détectée sans qu'une isolation de la source ne soit possible 2) d'identifier des modes communs de panne, c'est-à-dire un embarquement simultané cohérent de plusieurs capteurs mesurant le même paramètre. La redondance matérielle utilisée aujourd'hui ne permet pas de détecter un embarquement simultané cohérent de deux ou trois capteurs 3) de sélectionner les sources toujours valides lorsque le schéma de vote majoritaire détecte une faute d'un capteur. Le schéma actuellement en usage sur avion combine les sources redondantes pour délivrer une mesure consolidée. En cas d'invalidation de celle-ci suite à la perte d'au moins deux capteurs, il est en effet possible que le troisième soit toujours valide et puisse être utilisé pour le reste du vol.Les bénéfices potentiels à plus long terme se situent donc dans l'amélioration des performances (en réduisant par exemple le nombre de commutations de lois), et dans la diminution de la charge de travail des pilotes en accroissant encore la disponibilité des fonctions de haut niveau destinées à les seconder et à alléger leur tâche (protections du domaine de vol, pilote automatique, etc.). La détection de modes communs de panne participera aussi à augmenter encore la sécurité en vol. / The improvement of the aircraft performance and the decrease of the pilots’workload require more complex new aircraft avionic systems. This complexificationpaves the way for new constraints, such as improving the availability of the most criticalflight parameters used by the pilots (mainly the calibrated airspeed) or by themost advanced flight control systems (as the angle of attack, the altitude pressureor the aircraft weight). Today, their availability is mainly guaranteed by mean of astrong hardware redundancy (triplex type for civil aircraft). However, this solution isperfectible and penalizes the overall system performances in terms of weight, powerconsumption, space requirements and extra maintenance needs. Some faults, suchas common mode failures, which correspond to simultaneous and consistent faultsof at least two sensors measuring a same variable, cannot be detected. In this thesis,a solution based on the principle of the so-called analytical redundancy has beendeveloped to detect them and reconstruct through time the missing signals. Thissolution depends on the measurements, and kinematic and flight dynamic equationsavailable. For instance, the lift force equation combines numerous flight parametersof interest. It is of great value in the data fusion process on condition of having anaccurate surrogate model (as lookup tables adjusted with flight data, neural network,etc.) to estimate the lift force coefficient. In the end, an extended Kalmanfilter has been developed to estimate the critical longitudinal flight parameters. Besides,the existing complementarity between this model-based approach and severalsignal-based methods has permitted to have sensor faults and weight error diagnosisalong with unitary sensor validation capabilities. The architecture and its relatedembedded algorithms finally developed have been done with respect to the strongindustrial constraints (particularly in term of computation burden and formalism).They have been validated using simulation and flight data sets, especially for theisolation of slow drift common mode failures as they represent today the most challengingsensor faults to detect.
4

Thermique des mini-canaux : comportement instationnaire et approche convolutive / Heat transfer in mini-channels : unsteady behaviour and convolutive approach

Hadad, Waseem Al 22 September 2016 (has links)
Un modèle semi-analytique permettant de simuler le transfert thermique conjugué dans un mini/macro canal plan soumis à des sources de chaleur surfaciques localisées sur les faces externes et variantes en fonction du temps, a été présenté et vérifié. Plus le diamètre hydraulique du canal est petit, plus la caractérisation expérimentale interne (mesure des températures et des flux) en régime thermique permanent ou transitoire à l'aide des capteurs internes est délicate. Une méthode non-intrusive permettant d'estimer les conditions internes à partir des mesures de température par thermographie infrarouge sur les faces externes et d'un modèle semi-analytique, a été effectuée. Comme le coefficient de transfert convectif forcé classique perd son sens en régime instationnaire, une approche alternative basée sur une fonction de transfert, valable pour un système linaire et invariant dans le temps a été mise en œuvre. Cette fonction peut être calculée analytiquement (uniquement pour une géométrie simple) ou estimée expérimentalement (géométrie complexe). Grâce au caractère intrinsèque de cette fonction de transfert, deux capteurs virtuels ont été conçus : capteur virtuel de température et détecteur d'encrassement permettent respectivement d'estimer les températures internes et de détecter l'encrassement qui peut avoir lieu dans l'échangeur à partir des mesures de températures sur les faces externes / A semi-analytical model allowing to simulate the transient conjugate heat transfer in mini/macro plane channel subject to a heat source(s) localized on the external face(s), was presented and verified. The developed model takes into account advection-diffusion in the fluid and conduction in the solid. As the hydraulic diameter of the channel becomes small, the internal experimental characterization (measurement of temperature and heat flux) using internal sensors become tricky because internal sensors located may compromise the structural integrity of the whole system. A non-intrusive method for estimating the internal conditions from infrared temperature measurements on the external faces using the semi-analytical model was performed. Since the classic convective heat transfer coefficient loses its meaning in transient state, an alternative approach based on a transfer function, valid for Linear Time-Invariant (LTI) systems, was highlighted. This function can be calculated analytically only for a simple geometry. For complex geometries it can be estimated experimentally. Thanks to intrinsic character of this function, two characterization methods were designed. The first to estimate the temperature at a point from a measurement at another point in the system (virtual temperature sensor). The second method concerns the detection of fouling layers that may appear in the heat exchanger from temperature measurements on the external faces
5

Tolérance aux Défaillances par Capteurs Virtuels : application aux Systèmes de Régulation d'un Turboréacteur / Virtual Sensors for Fault-Tolerant System : application to a Jet Engine Control Systems

Souami, Yani 16 July 2015 (has links)
L'industrie aéronautique évolue dans un contexte concurrentiel qui encourage les motoristes et avionneurs à réduire les coûts de production et à améliorer leurs services aux compagnies aériennes tels que la réduction des coûts d'exploitation et de maintenances des avions. Afin de relever ce défi économique, nous proposons dans cette thèse de remplacer l'architecture de régulation actuelle de certains équipements du turboréacteur, par une architecture simplifiée plus économe en capteurs et harnais en remplaçant la redondance matérielle des capteurs par une redondance analytique. Ainsi, en cas de fonctionnement anormal, les capteurs virtuels proposés pourront être utilisés pour consolider la prise de décision sur l'état du capteur par des tests de cohérence et de validation croisée et le cas échéant se substituer aux mesures.Dans ce travail de thèse, on s'est intéressé à la surveillance des systèmes de régulation de géométries variables (régulation du flux d'air en entrée et la quantité de carburant) avec comme contrainte forte la non-modification des paramètres des lois de commande existantes et le maintien de l'opérabilité du turboréacteur avec une dégradation des performances acceptables selon les spécifications du cahier des charges.Pour répondre à ces contraintes opérationnelles, une approche FTC (Fault Tolerant Control) passive est proposée. Cette approche nommée, AVG-FTC (Aircraft Variables Geometries-Fault-Tolerant Control) s'articule autour de plusieurs sous-systèmes mis en cascades. Elle tient compte du caractère instationnaire des systèmes étudiés, des différents couplages entre géométries variables et des incertitudes de modélisation. Ainsi, l'approche utilise un modèle neuronal du capteur couplé à un observateur de type Takagi-Sugeno-LPV (Linéaire à Paramètres Variant) et à un estimateur non linéaire robuste de type NEKF (Filtre de Kalman Étendu Neuronal) qui permet de produire une estimation temps réel des grandeurs surveillées. En utilisant la plateforme de prototypage et de tests du motoriste, nous avons pu évaluer l'approche AVG-FTC en simulant plusieurs scénarios de vol en présence de défaillances. Ceci a permis de montrer les performances de l'approche en termes de robustesse, de garantie de stabilité des boucles de régulations et d'opérabilité du turboréacteur. To improve the availability, a solution that aircraft manufacturers and suppliers adopt was the fault tolerance. / Over the years, market pressure has ensured that engine manufacturers invest in technology to provide clean, quiet, affordable, reliable, and efficient power. One of the last improvements is the introduction of virtual sensors that make use of non-like signals (analytical redundancy). This, is expected to improve weight, flight safety and availability. However, this new approach has not been widely investigated yet and needs further attention to remove its limitations for certificated applications.The concept of virtual sensors goes along with fault tolerance control strategies that help in limiting disruptions and maintenance costs. Indeed, a fault-tolerant control (FTC) scheme, allows for a leaner hardware structure without decreasing the safety of the system.We propose in this thesis work, to monitor through a passive FTC architecture, the Variables Geometries subsystems' of the engine: the VSV (Variable Stator Vane) and FMV (Fuel Metering Valve). A strong constrains, is not to change the parameters of the existing controllers. The approach named AVG-FTC (Variable Geometries Aircraft-Fault-Tolerant Control) is based on several cascaded sub-systems that allow to deal with the Linear Parameter Varying (LPV) model of the systems and modelling errors. The proposed FTC scheme uses a neural model of the sensor associated with a Takagi-Sugeno observer and a Neuronal Extended Kalman Filter Neural (NEKF) to account for those dynamics that cannot be explained with the LPV model to produce a real-time estimate of the monitored outputs. In case of sensor abnormality, the proposed virtual sensors can then be used as an arbitrator for sensor monitoring or as a healthy sensor used by the controller. To evaluate the approach, serval closed-loop simulations, on SNECMA jet-engine simulator have been performed. The results for distinct flight scenarios with different sensors faults have shown the capabilities of the approach in terms of stability and robustness.

Page generated in 0.0367 seconds