• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 658
  • 112
  • 79
  • 62
  • 46
  • 45
  • 27
  • 26
  • 26
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • Tagged with
  • 1305
  • 277
  • 125
  • 117
  • 97
  • 90
  • 82
  • 81
  • 72
  • 71
  • 61
  • 60
  • 59
  • 52
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
261

Expression and physiological significance of murine homologues of Drosophila gustavus

Xing, Yan, 1972- January 2007 (has links)
Understanding the genetic control of gametogenesis is a central goal of developmental biology and is important for treating infertility in humans. An approach to identifying critical genes in mammals is to search for and study homologues of genes known to play key roles in other organisms. In the fly, Drosophila melanogaster, GUS protein is a component of nuage, an electron-dense aggregation in early germ cells, and is required for oocyte development. GUS physically interacts with VASA, an RNA helicase thought to regulate mRNA metabolism. I identified two murine genes, SSB-1 and SSB-4, that are similar to and likely homologues of gus. SSB-1, SSB-4 and GUS each contain two conserved regions, termed the SPRY domain and the SOCS box, respectively. SSB-1 and SSB-4 share about 75% sequence identity and about 70% identity with GUS. Both SSB-1 and SSB-4 RNA and protein were found to be express in mouse ovarian granulosa cells of all stages of folliculogenesis. These cells support oocyte development and also produce steroids. Unexpectedly, SSB-1 and SSB-4 were only weakly or not detectable in oocytes, that contrasts with the expression of GUS in Drosophila oocytes. However, SSB-1 mRNA and protein were expressed in male germ cells; specifically in spermatocytes and spermatids. SSB-1 in spermatids was localized in a specialized structure known as the chromatoid body. Although the function of this structure is not quite clear, it has been compared to nuage, and one of its components is MVH, the murine homologue of VASA. Finally, using RNAi technology, SSB-1 was transiently depleted SSB-1 from a granulosa cell line. These cells showed a transient decrease in expression of the gene encoding P450scc, the rate-limiting enzyme in steroid synthesis. Preliminary results also indicated a decrease in progesterone synthesis. Taken together, these results establish the expression pattern of murine homologues of Drosophila GUS in mouse ovary and testis, reveal it might play function in translation regulation in male spermatogenesis, and identify a potential role in steroidogenesis by ovarian granulosa cells.
262

Characterization of Amino Acid Transporters in the Brain : Molecular and Functional Studies of Members within the Solute Carrier Families SLC38 and SLC6

Hägglund, Maria January 2013 (has links)
Solute carriers (SLCs) comprise the largest group of transporters in humans and there are currently 52 SLC families. They are embedded in cellular membranes and transport numerous molecules; defects in many of the genes encoding SLCs have been connected to pathological conditions, and several SLCs are potential drug targets. The SLC38 family has in total eleven members in humans and they encode transporters called SNATs. In paper I and paper II, we reported molecular and functional characterization of Slc38a7 and Slc38a8, two of the previous orphan members in the family which we suggested to be named SNAT7 and SNAT8, respectively. Using in situ hybridization and immunohistochemistry, these transporters showed similar expression pattern and localized to neurons in the brain For functional characterization proteins were overexpressed in X. laevis oocytes and an Uptake Assay and electrophysiological recordings showed preferred transport of L-glutamine, L-histidine, L-alanine, L-asparagine, L-aspartate and L-arginine for SNAT7. A similar pattern was seen for SNAT8 in a slightly different order of affinities. We classified SNAT7 as a system N transporter and SNAT8 as belonging to system A, and suggests that SNAT7 and SNAT8 could play a role in the glutamine/glutamate(GABA) cycle (GGC) in the brain. Furthermore, we studied the vesicular B0AT3 (Slc6a17) transporter in paper III, and the sodium-coupled amino acid transporter B0AT2 (Slc6a15) in paper IV. Tissue expression studies showed similar localization of Slc6a17 and Slc6a15 mRNA using in situ hybridization and real-time PCR. In paper III, vesicular localization of B0AT2 was shown in both excitatory and inhibitory neurons. When challenging the monoaminergic system with drugs both Slc6a17 and Slc6a15 were upregulated. Suggested roles for the transporters are thereby in synaptic remodeling by regulating the availability of free amino acids used as precursors needed in neurotransmitter synthesis. Moreover, in paper IV, immunohistochemistry showed B0AT3 localization to neurons, astrocytes and epithelial cells of the choroid plexus. Leucine injections caused a smaller reduction of food intake as well as higher neuronal activation in the paraventricular hypothalamic nucleus in Slc6a15 KO mice, compared with wild type mice. This suggests B0AT2 involvement in the anorexigenic effects of leucine.
263

Investigating pellino function in Drosophila development

Sarac, Amila. January 2007 (has links)
Although many of the genes and pathways involved in Drosophila embryogenesis have been thoroughly investigated, a complete understanding of the mechanisms behind these processes is still lacking. In order to gain a better perspective, the main objective of current research is to identify additional components of the signaling pathways that are crucial for normal Drosophila development. / One such developmental process is germ band retraction, which occurs in mid-embryogenesis and consists of the movement of the tail end of the germ band, or embryo proper, to its final posterior position. One of our primary objectives is to identify the signaling pathways behind this process. To this end, we investigated the 7T2 mutant, which fails to retract. This zygotic lethal mutant was originally uncovered in a screen for maternal-effect U-shaped embryonic phenotypes. Using a combination of meiotic recombination with molecularly mapped P-element insertions and complementation tests with deficiencies, we mapped the 7T2 mutant to the chromosomal region containing the gene pellino. Here, we show that both pellino mRNA and Pellino protein are missing in the 7T2 mutant tissue, indicating that 7T2 is a loss of function allele of pellino. / Further characterization of the 7T2 mutant revealed three distinct phenotypes: germ band retraction defects, twisted germ bands and head defects. Based on these observations, we propose that pellino is involved in several biological processes during early Drosophila development. Here we show that pellino is involved in the JNK pathway through genetic interaction with hemipterous, an upstream member of the JNK pathway. In addition, we provide preliminary evidence suggesting that the expression of Twist, a protein induced by the Toll pathway, is affected in the absence of pellino, suggesting a role for pellino in dorsal-ventral pattern formation.
264

LTE UPLINK MODELLING AND ANALYSIS OF CARRIER FREQUENCY OFFSET ON UPLINK TRANSMISSION INTERFERENCE

Baby, Johnson January 2013 (has links)
This master thesis analyzes the effect of Carrier Frequency Offsets (CFO) on LTEuplink transmission, which is the main cause of ICI (Inter Carrier Interference) andMAI (Multiuser Access Interference). A model of the LTE uplink is required toconduct the study and is implemented in MATLAB, in compliance with 3GPPspecifications. The model can generate uplink signal as generated by the UE, (UserEquipment) and it supports multiple channel bandwidths described by the 3GPP.The channel estimation is done with the help of block type pilots. The model is usedto simulate the experimental conditions. The presence of CFO results in poor systemperformance. Therefore, many algorithms have been proposed for the CFOcancellation such as Successive Interference Cancellation (SIC), Parallel InterferenceCancellation (PIC) and Inverse Interference Matrix Cancellation. As the topic is verybroad, I investigate the performance of Inverse Interference Matrix Cancellationalgorithm. Compared with the other CFO cancellation algorithms this algorithm candirectly estimate the interference components from the inverse pilot matrix, thusthere is no need for CFO estimation. Simulation results show that the algorithm isvery effective in the presence of CFO. The channel estimation technique used is theLeast Square (LS) method and frequency selective channel is used for simulation.Performance graphs are plotted in terms of BER (Bit Error Rate) against differentvalues of SNR (Signal to Noise Ratio).
265

Polymorphisms in the promoter region of the dopamine transporter : a candidate locus for alcohol abuse

Bradley, Shannon. January 2000 (has links)
The dopamine transporter, the principle binding site for such drugs of abuse as cocaine and amphetamines, has a critical role in limiting dopamine availability. Several lines of evidence, including variation of DAT density in human alcoholics and in vervet monkeys with a preference for alcohol, have implicated this locus as a candidate gene, which might increase vulnerability to alcoholism. The objective of this study was to identify polymorphisms in the regulatory region of the dopamine transporter and determine whether there was an association between any of the alleles and alcoholism. Five polymorphisms were identified: three in humans and two in vervet monkey subjects. Mutation analysis of this locus may be a critical step in identifying alleles which increase susceptibility to alcohol abuse in humans and vervet monkeys.
266

Over-expression of the potassium-chloride co-transporter KCC2 in developing zebrafish

Reynolds, Annie, 1978- January 2006 (has links)
In embryonic neurons, the intracellular chloride concentration is elevated, making GABA and glycine depolarizing. Later in development, coincident with neuronal maturation, the extruding potassium-chloride co-transporter KCC2 is expressed. It reverses the chloride gradient, rendering it hyperpolarizing. Early depolarization is assumed to play trophic roles during nervous system development. I thus decided to investigate the effects of the depolarizing chloride gradient on development in vivo in the zebrafish embryo. I first determined the temporal pattern of KCC2 expression in zebrafish and found it was absent in the embryo. I then over-expressed wild-type, gain-of-function and loss-of-function variants of human KCC2, using GFP-tagged constructs for detection purposes. Over-expression of functional hKCC2 perturbed the morphology and motor behaviours of the embryos. At the cellular level, KCC2 impaired axonal growth and affected the neuronal populations in the brain, hindbrain and spinal cord. This suggests the depolarizing effects of glycine are critical for neurogenesis.
267

Space-Frequency Equalization in Broadband Single Carrier Systems

Kongara, Gayathri January 2009 (has links)
Broadband wireless access systems can be used to deliver a variety of high data rate applications and services. Many of the channels being considered for such applications exhibit multipath propagation coupled with large delay spreads. Cur- rently, orthogonal frequency division multiplexing is employed in these channels to compensate the effect of dispersion. Single carrier (SC) modulation in conjunc- tion with frequency-domain equalization (FDE) at the receiver has been shown to be a practical alternate solution as it has lower peak to average power ratio and is less sensitive to frequency offsets and phase noise compared to OFDM. The effect of multipath propagation increases with increasing data rate for SC systems. This leads to larger inter-symbol-interference (ISI) spans. In addition the achievable ca- pacity of SC-broadband systems depends on their ability to accommodate multiple signal transmissions in the same frequency band, which results in co-channel inter- ference (CCI) when detecting the desired data stream. The effects of CCI and ISI are more pronounced at high data rates. The objective of this research is to investi- gate and a develop low-complexity frequency domain receiver architectures capable of suppressing both CCI and ISI and employing practical channel estimation. In this thesis, a linear and a non-linear receiver architecture are developed in the frequency domain for use in highly dispersive channels employing multiple input multiple output (MIMO) antennas. The linear receiver consists of parallel branches each corresponding to a transmit data stream and implements linear equalization and demodulation. Frequency domain joint CCI mitigation and ISI equalization is implemented based on estimated channel parameters and is called space-frequency Broadband wireless access systems can be used to deliver a variety of high data rate applications and services. Many of the channels being considered for such applications exhibit multipath propagation coupled with large delay spreads. Cur- rently, orthogonal frequency division multiplexing is employed in these channels to compensate the effect of dispersion. Single carrier (SC) modulation in conjunc- tion with frequency-domain equalization (FDE) at the receiver has been shown to be a practical alternate solution as it has lower peak to average power ratio and is less sensitive to frequency offsets and phase noise compared to OFDM. The effect of multipath propagation increases with increasing data rate for SC systems. This leads to larger inter-symbol-interference (ISI) spans. In addition the achievable ca- pacity of SC-broadband systems depends on their ability to accommodate multiple signal transmissions in the same frequency band, which results in co-channel inter- ference (CCI) when detecting the desired data stream. The effects of CCI and ISI are more pronounced at high data rates. The objective of this research is to investi- gate and a develop low-complexity frequency domain receiver architectures capable of suppressing both CCI and ISI and employing practical channel estimation. In this thesis, a linear and a non-linear receiver architecture are developed in the frequency domain for use in highly dispersive channels employing multiple input multiple output (MIMO) antennas. The linear receiver consists of parallel branches each corresponding to a transmit data stream and implements linear equalization and demodulation. Frequency domain joint CCI mitigation and ISI equalization is implemented based on estimated channel parameters and is called space-frequency
268

Carrier Relaxation Dynamics in Graphene

Mittendorff, Martin 10 March 2015 (has links) (PDF)
Graphene, the two-dimensional lattice of sp2-hybridized carbon atoms, has a great potential for future electronics, in particular for opto-electronic devices. The carrier relaxation dynamics, which is of key importance for such applications, is in the main focus of this thesis. Besides a short introduction into the most prominent material properties of graphene and the experimental techniques, this thesis is divided into three main parts. The investigation of the carrier relaxation dynamics in the absence of a magnetic field is presented in Chapter 3. In the first experiment, the anisotropy of the carrier excitation and relaxation in momentum space was investigated by pump-probe measurements in the near-infrared range. While this anisotropy was not considered in all previous experiments, our measurements with a temporal resolution of less than 50 fs revealed the polarization dependence of the carrier excitation and the subsequent relaxation. About 150 fs after the electrons are excited, the carrier distribution in momentum space gets isotropic, caused by electron-phonon scattering. In a second set of two-color pump-probe experiments, the temperature of the hot carrier distribution, which was obtained within the duration of the pump pulse (about 200 fs), could be estimated. Furthermore, a change in sign of the pump-probe signal can be used as an indicator for the Fermi energy of different graphene layers. Pump-probe experiments in the far-infrared range in reflection and transmission geometry were performed at high pump power. A strong saturation of the pump-induced transmission was found in previous experiments, which was attributed to the pump-induced change in absorption. Our investigation shows the strong influence of pump-induced reflection at long wavelengths, as well as a lot smaller influence of the saturation of the pump-induced change in absorption. At a high pump power, the increase of the reflection exceeds the change in absorption strongly, which leads to negative pump-probe signals in transmission geometry. In Chapter 4, investigations of the carrier dynamics of graphene in magnetic fields of up to 7T are presented. Even though the optical properties of Landau-quantized graphene are very interesting, the carrier dynamics were nearly unexplored. A low photon energy of 14meV allows the investigation of the intraband Landau-level (LL) transitions. These experiments revealed two main findings: Firstly, the Landau quantization strongly suppresses the carrier relaxation via optical-phonon scattering, resulting in an increased relaxation time. Secondly, a change in sign of the pump-probe signal can be observed when the magnetic field is varied. This change in sign indicates a hot carrier distribution shortly after the pump pulse, which means that carrier-carrier scattering remains very strong in magnetic fields. In a second set of pump-probe measurements, carried out at a photon energy of 75meV, the relaxation dynamics of interband LL transitions was investigated. In particular, experiments on the two energetically degenerate LL transitions LL(−1)->LL(0) and LL(0)->LL(1) showed the influence of extremely strong Auger processes. An ultrafast and extremely broadband terahertz detector, based on a graphene flake, is presented in the last chapter of this thesis. To couple the radiation efficiently to the small flake, the inner part of a logarithmic periodic antenna is connected to it. With a rise time of about 50 ps in a wavelength range of 9 μm to 500 μm, this detector is very interesting to obtain the temporal overlap in two-color pump-probe experiments with the free-electron laser FELBE. Furthermore, the importance of the substrate material, in particular for the high-speed performance, is discussed.
269

Identification of the putative phosphate transport protein in mouse renal brush border membrane vesicles on SDS-polyacrylamide gels

Vizel, Elliott J. January 1984 (has links)
No description available.
270

Expression, regulation and function of the stem-loop binding protein during mammalian oogenesis

Allard, Patrick, 1974- January 2005 (has links)
Although mRNAs encoding the histone proteins are among the most abundant mRNAs in mammalian oocytes, the mechanism regulating their translation in these cells has not been identified. Most histone mRNAs are not polyadenylated but instead carry in their 3'-utr a highly conserved stem-loop structure. In somatic cells, the stem-loop binding protein (SLBP) is expressed during S-phase of the cell cycle and associates with the stem-loop of histone mRNAs promoting their processing and translation and thereby coordinating their expression to DNA replication. As histone mRNAs are abundant in immature oocytes which are in G2 of the cell cycle and in ovulated or mature oocytes which are in M-phase, I examined the expression and the regulation of histone mRNAs in immature and maturing mouse oocytes. First, I described SLBP expression during oogenesis and pre-implantation embryonic development. I showed that SLBP is present at low levels in the nucleus of the immature oocyte and accumulates significantly during maturation of the oocyte. At both stages, SLBP is the only stem-loop binding activity present. I showed that SLBP meiotic accumulation correlates with the adenylation of SLBP mRNA and is mediated by the presence of a cytoplasmic polyadenylation element in SLBP 3'-utr. Also, I demonstrated that histones are synthesized in the immature and mature oocyte and that the translation of a reporter mRNA bearing the histone 3'-utr increases dramatically during oocyte maturation consistent with the accumulation of SLBP. I specifically blocked SLBP accumulation using RNA interference and observed that both translation of the reporter mRNA and endogenous histone synthesis are significantly reduced. Moreover, SLBP-depleted eggs display a significant decrease in pronuclear size and in the total amount of histones detectable on their chromatin. Finally, I also showed that elevating the amount of SLBP in immature (G2) oocytes is sufficient to increase translatio

Page generated in 0.0604 seconds