• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 14
  • 13
  • 12
  • 11
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Synthesis and Plasmonic Properties of Copper-based Nanocrystals / 銅基ナノ結晶の合成とプラズモニック特性

Chen, Lihui 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19959号 / 理博第4226号 / 新制||理||1607(附属図書館) / 33055 / 京都大学大学院理学研究科化学専攻 / (主査)教授 寺西 利治, 教授 倉田 博基, 教授 島川 祐一 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
32

Charge Carrier Dynamics of Bare and Dye-Sensitized Cerium Oxide Nanoparticles

Empey, Jennifer January 2021 (has links)
No description available.
33

Manipulating Photocarrier and Exciton Transport in Hybrid and Molecular Semiconductors

Linrui Jin (13162254) 27 July 2022 (has links)
<p> Excitons represent the electronic excited state of organic semiconductor and many low-dimensional inorganic semiconductors. In solar energy conversion systems, exciton transport affects how fast the charges reach the electrodes thus governs the performance of photovoltaic cells. In optoelectronic applications such as semiconductor lasers and light-emitting diodes, exciton radiative rate determines the efficiency of luminescence in competition to various nonradiative processes. Therefore, understanding how exciton migrates over space as well as its decay dynamics are vital for the design of highly efficient optoelectronic devices. To interrogate these photophysical processes requires experimental tools with simultaneous high temporal and spatial resolution. In this thesis, I introduce two transient imaging systems (photoluminescence imaging with 300 ps time resolution, and transient absorption microscopy with 200 fs time) that are innovative tools to directly probe excited state dynamics and transport in sub-μm domains. The techniques were applied to a type of promising semiconductor, perovskites, including surface-passivated hybrid perovskite and 2D layered perovskites to explore the fundamental mechanisms that affect exciton transport. The fundamental understanding of excitons shed light on the underlying physics such as exciton delocalization, exciton-exciton interaction, and how these properties affected by the static and dynamic disorders of the material. We further demonstrated a novel twisted superlattice using ultrathin perovskites that confines excitons due to increased density of state from the moiré flat bands. In addition, excitons can be accelerated by strongly interacts photons, forming polariton quasiparticles that possess small effective mass. This is demonstrated by coupling 2D layered perovskites to a plasmonic array. We further showcase the formation of bulk polaritons without an external optical cavity in a self-assembled organic aggregate. Experimental investigation into these intriguing phenomena provide an approach to study fundamental processes such as many-body interaction and quantum coherence. </p>
34

Ultrafast spectroscopy of charge separation, transport and recombination processes in functional materials for thin-film photovoltaics

Wehrenfennig, Christian January 2014 (has links)
Dye-sensitized solar cells (DSSCs) and perovskite solar cells are emerging as promising potential low-cost alternatives to established crystalline silicon photovoltaics. Of the employed functional materials, however, many fundamental optoelectronic properties governing photovoltaic device operation are not sufficiently well understood. This thesis reports on a series of studies using ultrafast THz and photoluminescence spectroscopy on two classes of such materials, providing insight into the dynamics of charge-transport and recombination processes following photoexcitation. For TiO<sub>2</sub>-nanotubes, which have been proposed as easy-to-fabricate electron transporters for DSSCs, fast, shallow electron trapping is identified as a limiting factor for efficient charge collection. Trapping lifetimes are found to be about an order of magnitude shorter than in the prevalently employed sintered nanoparticles under similar excitation conditions and trap saturation effects are not observed, even at very high excitation densities. In organo-lead halide perovskites - specifically CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> and CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3-x</sub>Cl<sub>x</sub>, which have only recently emerged as highly efficient absorbers and charge transporters for thin-film solar cells, carrier mobilities and fundamental recombination dynamics are revealed. Extremely low bi-molecular recombination rates at least four orders of magnitude below the prediction of Langevin's model are found as well as relatively high charge-carrier mobilities in comparison to other solution-processable materials. Furthermore a very low influence of trap-mediated recombination channels was observed. Due to a combination of these factors, diffusion lengths reach hundreds of nanometres for CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> and several microns for CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3-x</sub>Cl<sub>x</sub>. These results are shown to hold for both, solution processed and vapour-deposited CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3-x</sub>Cl<sub>x</sub> and underline the superb suitability of the materials as absorbers in solar cells, even in planar heterojunction architectures. The THz-frequency spectrum of the conductivity of the investigated perovskites is consistent with Drude-like charge transport additionally exhibiting weak signatures of phonon coupling. These coupling effects are also reflected in the luminescence of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3-x</sub>Cl<sub>x</sub>, where they are believed to be the cause of the observed homogeneous spectral broadening. Further photoluminescence measurements were performed at temperatures between 4 K and room temperature to study the nature of recombination pathways in the material.
35

Optical properties and degradation of deep ultraviolet AIGaN-based light-emitting diodes

Pinos, Andrea January 2011 (has links)
QC 20110831
36

Ultrafast charge dynamics in novel colloidal quantum dots

Cadirci, Musa January 2014 (has links)
In this thesis ultrafast exciton dynamics of several colloidal quantum dots have been studied using visible transient absorption spectroscopy. The resultant transient decays and differential transmission spectra were analysed to determine the ultrafast relaxation channels, multiple exciton generation (MEG) efficiency and multi-exciton interactions in the observed materials. All QDs were preliminarily optically characterized using steady state absorption and photoluminescence spectroscopies. In addition, a high repetition infrared femtosecond pump probe experiment was designed and built to detect the picosecond intraband carrier relaxations in quantum dots. Picosecond carrier dynamics of type-II ZnTe/ZnSe and of CuInSe2 and CuInS2 type-I quantum dots were investigated. The common feature of these materials is that they are eco-friendly materials, being alternatives to the toxic Cd- and Pb- based materials. It was found that surface trapping occurred in both cases for electrons in the hot states, and in the minimum of the conduction band for ZnTe/ZnSe core/shell materials. Trion formation was observed in ZnTe/ZnSe core/shell dots at high power and unstirred conditions. The hot and cold electron trapping processes in type-II dots and CuInS2 and CuInSe2 dots shifted, distorted and moderately cancelled the bleach features. In addition, intra-gap hole trapping was observed in CuInS2 and CuInSe2 dots which results in a long decay feature in the recorded transients. MEG competes with Auger cooling, surface mediated relaxation and phonon emission. To enhance the MEG quantum yield, the rival mechanisms were suppressed in well-engineered CdSe/CdTe/CdS and CdTe/CdSe/CdS core/shell/shell and CdTe/CdS core/shell type-II quantum dots. The MEG slope efficiency and threshold for a range of different core size and shell thickness were found to be (142±9)%/Eg and (2.59±0.16)Eg, respectively. The observed threshold was consistent with the literature, whereas, the obtained slope efficiency was about three times higher than the previously reported values. The biexciton interaction energy of the dots stated in the previous paragraph was also studied. To date, time-resolved photoluminescence (TRPL) has been employed to study exciton interactions in type-II quantum dots and large repulsive biexciton interaction energy values between 50-100 meV have been reported. However, unlike the TRPL method, the TA experiment ensures that only two excitons remain in the band edge of the dot. Using this method, large attractive biexciton interaction energies up to ~-60 meV was observed. These results have promising implications regarding enhancing the MEG quantum yield.
37

A Curved Graphene Nanoribbon with Multi-Edge Structure and High Intrinsic Charge Carrier Mobility

Niu, Wenhui, Ma, Ji, Soltani, Paniz, Zheng, Wenhao, Liu, Fupin, Popov, Alexey A., Weigand, Jan J., Komber, Hartmut, Poliani, Emanuele, Casiraghi, Cinzia, Droste, Jörn, Hansen, Michael Ryan, Osella, Silvio, Beljonne, David, Bonn, Mischa, Wang, Hai I., Feng, Xinliang, Liu, Junzhi, Mai, Yiyong 28 October 2021 (has links)
Structurally well-defined graphene nanoribbons (GNRs) have emerged as highly promising materials for the next-generation nanoelectronics. The electronic properties of GNRs critically depend on their edge topologies. Here, we demonstrate the efficient synthesis of a curved GNR (cGNR) with a combined cove, zigzag, and armchair edge structure, through bottom-up synthesis. The curvature of the cGNR is elucidated by the corresponding model compounds tetrabenzo[a,cd,j,lm]perylene (1) and diphenanthrene-fused tetrabenzo[a,cd,j,lm]perylene (2), the structures of which are unambiguously confirmed by the X-ray single-crystal analysis. The resultant multi-edged cGNR exhibits a well-resolved absorption at the near-infrared (NIR) region with a maximum peak at 850 nm, corresponding to a narrow optical energy gap of ∼1.22 eV. Employing THz spectroscopy, we disclose a long scattering time of ∼60 fs, corresponding to a record intrinsic charge carrier mobility of ∼600 cm2 V–1 s–1 for photogenerated charge carriers in cGNR.
38

High-Mobility Semiconducting Two-Dimensional Conjugated Cova-lent Organic Frameworks with p-Type Doping

Wang, Mingchao, Wang, Mao, Lin, Hung-Hsuan, Ballabio, Marco, Zhong, Haixia, Bonn, Mischa, Zhou, Shengqiang, Heine, Thomas, Cánovas, Enrique, Dong, Renhao, Feng, Xinliang 20 December 2021 (has links)
Two-dimensional conjugated covalent organic frameworks (2D c-COFs) are emerging as a unique class of semiconducting 2D conjugated polymers for (opto)electronics and energy storage. Doping is one of the common, reliable strategies to control the charge carrier transport properties, but the precise mechanism underlying COF doping has remained largely unexplored. Here we demonstrate molecular iodine doping of a metal–phthalocyanine-based pyrazine-linked 2D c-COF. The resultant 2D c-COF ZnPc-pz-I2 maintains its structural integrity and displays enhanced conductivity by 3 orders of magnitude, which is the result of elevated carrier concentrations. Remarkably, Hall effect measurements reveal enhanced carrier mobility reaching ∼22 cm2 V–1 s–1 for ZnPc-pz-I2, which represents a record value for 2D c-COFs in both the direct-current and alternating-current limits. This unique transport phenomenon with largely increased mobility upon doping can be traced to increased scattering time for free charge carriers, indicating that scattering mechanisms limiting the mobility are mitigated by doping. Our work provides a guideline on how to assess doping effects in COFs and highlights the potential of 2D c-COFs to display high conductivities and mobilities toward novel (opto)electronic devices.
39

Unveiling Electronic Properties in Metal–Phthalocyanine-Based Pyrazine-Linked Conjugated Two-Dimensional Covalent Organic Frameworks

Wang, Mingchao, Ballabio, Marco, Wang, Mao, Lin, Hung-Hsuan, Biswal, Bishnu P., Han, Xiaocang, Paasch, Silvia, Brunner, Eike, Liu, Pan, Chen, Mingwei, Bonn, Mischa, Heine, Thomas, Zhou, Shengqiang, Cánovas, Enrique, Dong, Renhao, Feng, Xinliang 04 March 2021 (has links)
π-Conjugated two-dimensional covalent organic frameworks (2D COFs) are emerging as a novel class of electro-active materials for (opto-)electronic and chemiresistive sensing applications. However, understanding the intricate interplay between chemistry, structure and conductivity in π-conjugated 2D COFs remains elusive. Here, we report a detailed charac-terization for the electronic properties of two novel samples consisting of Zn- and Cu-phthalocyanine-based pyrazine-linked 2D COFs. These 2D COFs are synthesized by condensation of metal-phthalocyanine (M=Zn and Cu) and pyrene derivatives. The obtained polycrystalline-layered COFs are p-type semiconductors both with a band gap of ~1.2 eV. Mobilities up to ~5 cm²/Vs are resolved in the dc limit, which represent a lower threshold induced by charge carrier localization at crystalline grain boundaries. Hall Effect measurements (dc limit) and terahertz (THz) spectroscopy (ac limit) in combination with den-sity functional theory (DFT) calculations demonstrate that varying metal center from Cu to Zn in the phthalocyanine moiety has a negligible effect in the conductivity (~5×10⁻⁷ S/cm), charge carrier density (~10¹² cm⁻³), charge carrier scattering rate (~3×10¹³ s⁻¹), and effective mass (~2.3m₀) of majority carriers (holes). Notably, charge carrier transport is found to be aniso-tropic, with hole mobilities being practically null in-plane and finite out-of-plane for these 2D COFs.
40

Carrier Dynamics in InGaN/GaN Semipolar and Nonpolar Quantum Wells

Mohamed, Sherif January 2013 (has links)
InGaN based light emitting devices operating in the blue and near UV spectral regions are commercialized and used in many applications. InGaN heterostructures experience compositional inhomogeneity and thus potential fluctuations, such that regions of higher indium composition are formed and correspond to lower potentials. The indium rich regions form localization centers that save carriers from non-radiative recombination at dislocations, thus despite the large defect density, their quantum efficiency are surprisingly large. However, the conventional c-plane InGaN QWs suffer from high internal piezoelectric and spontaneous fields. These fields are detrimental for the performance of such structures as they lead to the quantum confined stark effect causing red-shift of the emission as well as reducing the electrons and holes wavefunctions overlap, thereby reducing the radiative recombination rate. However, growth of InGaN QWs on semipolar and nonpolar planes greatly reduced the polarization fields. Semipolar and nonpolar QWs experience an outstanding property which is polarized luminescence, opening a new frontier for applications for InGaN emitting devices. While nonpolar QWs have larger degree of polarized emission than semipolar QWs, semipolar QWs can emit in longer wavelengths due to their higher indium uptake. In this thesis, semipolar 20¯21 and nonpolar m-plane InGaN/GaN QWs were investigated. Photoluminescence, spectral and polarization dynamics were all studied in order to form a whole picture of the carrier dynamics in the QWs. Time resolved photoluminescence measurements were conducted for following carriers distribution between extended and localized states. Both the semipolar and nonpolar samples showed efficient luminescence through short radiative recombination times, as well as carrier localization in lower potential sites after thermal activation of excitons. Carrier localization was found to be benign as it didn’t degrade the performance of the samples or decrease the polarization ratio of their emission. However, the structures showed modest potential variations with the absence of deep localization centers or quantum dots. High polarization ratios were measured for both samples, which is well-known for nonpolar QWs. The high polarization ratio for the semipolar sample is of great importance, thus semipolar 20¯21 QWs should be considered for longer wavelength emitters with highly polarized spontaneous emission.

Page generated in 0.0735 seconds