• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 236
  • 49
  • 40
  • 25
  • 17
  • 7
  • 6
  • 4
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 451
  • 175
  • 99
  • 89
  • 84
  • 50
  • 50
  • 48
  • 47
  • 46
  • 44
  • 43
  • 41
  • 39
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Regolith-landform mapping and dryland salinity investigaton: Booberoi-Quandialla Transect, Western New South Wales

Holzapfel, Michael, n/a January 2004 (has links)
Landholders in the Booberoi to Quandialla (B-Q) Transect area, located in central west NSW, have been concerned about an emerging dryland salinity problem since the late 1990�s (Wooldridge 2002, pers. comm. Muller 2002, pers. comm.) with borehole information and electromagnetic induction investigations supporting anecdotal observations. The presence of indicator vegetation, waterlogging of soils and salinisation of land are becoming increasingly prevalent, with two well-documented sites including �Strathairlie� near Quandialla, and �Back Creek� near West Wyalong. The B-Q Transect area lies within the Bland Creek Catchment, a broad open plain of subdued topography and restricted drainage receiving sediments from elevated rises located to the west, south and east. Significant deposits of transported alluvial materials have in-filled the catchment to depths in excess of 160 m and have posed a particular impediment to regional-scale mineral exploration. Stream flow across the alluvial plains and low angle alluvial fans is intermittent with most of the flow being diverted into groundwater storage or lost to evaporation. Rarely do streams flow into Lake Cowal to the north. A partial electromagnetic (EM) induction survey coupled with a long term bore and piezometer network monitoring program have been implemented by the Department of Infrastructure, Planning and Natural Resources (DIPNR � formerly Department of Land and Water Conservation) Central West NSW Salt Group. These programs allow for initial, broad-scale evaluation of the magnitude and spatial distribution of the salinity problem but fail to pinpoint remaining sites at risk as well as the mechanisms of salt emplacement. As part of an approach to assist with hazard mitigation and land management, two regolith-landform maps are being compiled using 1:20,000 scales in the Back Creek and Quandialla areas. A third, more regional regolith-landform map at 1:50,000 scale (Holzapfel & Moore 2003a, b & c) provides context for the more detailed mapping areas. The new regolith-landform maps will aid in interpretation of existing geophysical techniques, help piece together the three-dimensional characteristics of the Bland Creek catchment, aid in the development of a shallow fluid flow and palaeotopographic model and assist land managers in formulating land management units (LMU�s). The three-dimensional integration of regolith-landform mapping, electromagnetic studies, bore information and other geophysical methods is critical in determining the interaction, distribution and movement of groundwater in the Bland Creek Catchment as buried palaeochannels represent preferred fluid pathways. The distribution of these palaeochannels has implications for future dryland salinity outbreaks, the remediation of current outbreaks and mineral exploration closer to the well-known Wyalong Goldfield (Lawrie et al., 1999). The western quarter of the B-Q Transect area partially overlaps with the recently completed GILMORE Project (Lawrie et al., 2003a,b & c), a multi-disciplinary study, coordinated by Geoscience Australia (GA) and the Bureau of Rural Sciences (BRS). Regolith-landform information in addition to gamma-ray spectrometry, magnetics, airborne electromagnetics and a digital elevation model acquired by the GILMORE Project have been incorporated into regolith-landform maps over the B-Q Transect. The incorporation of these datasets has helped not only extend the usefulness of the GILMORE Project data but provide a consistent, regolith-landform coverage for the broader Bland Creek Catchment. Regolith-landform mapping has been successful in highlighting major recharge zones for local and intermediate flow systems. The mechanisms for dryland salinity at two well-known sites have also been determined. Increasing salt stores are occurring through evaporation of intermittent floodwaters sourced from floodplains, back plains and broad meandering existing creek systems and recharging partially exposed palaeochannels intersecting the surface. Due to the shallow nature of these partially exposed palaeochannels, evaporation further concentrates the salt load in the soil profile. It is unknown if mapped shallow palaeochannels further away from current drainage systems are affected by rising salt loads. Regolith-landform mapping highlights two additional risk factors common to the 1:50,000 and 1:20,000 scale B-Q Transect mapping areas including widespread waterlogging of soils and wind erosion. Due to the subdued topography, features such as gilgai, fences and roads are having an effect on drainage modification. Wind erosion was also observed to play a major role within the B-Q Transect with significant loss of topsoil creating hardened clay surfaces resistant to water infiltration and significant redistributed deposits of aeolian materials. Interpretation of regolith-landform mapping against geophysical datasets and drill hole data show considerable lateral and vertical variation of regolith units. This variation of regolith distribution with depth does not reduce the effectiveness of using regolithlandform mapping as a valued management tool. The subdued relief coupled with the complex interplay between recharge zones, discharge zones and surficial drainage networks over the B-Q Transect still requires a detailed knowledge of surface regolithlandform characteristics whilst reinforcing the need for a multidisciplinary approach to gain a 3D perspective. Catchment analysis has been performed on drainage systems within the Bland Creek Catchment and has helped explain the strong effect different catchments have had on sediment supply to the Bland Basin. Catchment analysis results have been used in basic calculations of salt loads in the Bland Creek Catchment. An estimated 18,780 Tonnes/yr of salt enter the Bland Creek catchment and as stream flow out of the Bland Creek Catchment is intermittent, salt stores are increasing in the upper margins of the soil profile and groundwater reserves. Reconstruction of the palaeotopography of the B-Q Transect has been made possible using a mutli-disciplinary approach incorporating information from regolith-landform mapping, drill hole information, gamma-ray spectrometry and GILMORE Project datasets. The production of large-scale regolith-landform mapping, the development of a shallow fluid flow model and reconstruction of palaeotopography builds on and contributes to knowledge of the Bland Creek Catchment allowing for detailed farmscale and paddock-scale land management decisions.
132

The use of remote sensing to monitor land use change and assess its effect on the hydrology of Tuggeranong Creek catchment

Dao, Minh Truong, n/a January 1993 (has links)
Since the launch of the first earth resources monitoring satellite, remote sensing imagery has been used to provide information on the progress of urbanization, and land cover and land use change. The launch of the first SPOT satellite marked a significant improvement in spatial and spectral resolution for discriminating individual targets and increased the potential to acquire more information regarding land cover and land use. This study aims to investigate the capability of using SPOT digital imagery for monitoring land use change in the urbanised catchment of Tuggeranong Creek in the Australia Capital Territory, and assess its effects on catchment hydrology. SPOT multispectral and panchromatic imagery was acquired over the study area for January 1987 and September 1990. This imagery was digitally processed and analysed using microBRIAN (MB) V3.01 software to derive information on land cover and land use within the catchment. Multi-temporal imagery was co-registered to a base map with sub-output pixel accuracy. In order to improve spatial resolution, the multispectral imagery was merged with panchromatic imagery acquired on the same day using HIS and HPF techniques. The HPF technique retained more integrity of the original multispectral data than did the HIS technique. Both HPF merged and unmerged (original) image sets were used to assess the possibility of using higher spatial resolution imagery in subsequent classification and change detection analysis. On the basis of statistical calculation, non-vegetation classification results were found to be consistent between merged and un-merged imagery, but not consistent for vegetation classes. The inconsistency was found to be the result of seasonal differences in phenology and sun angle. However more small sub-pixel sized features such as houses and lawns were identified using merged imagery. Regression differencing and post classification comparisons were performed on both merged and unmerged image sets to detect temporal changes which had occurred between both image dates. As expected, merged imagery led to more sub-pixel sized examples of change being highlighted using both the HPF and HIS techniques. However, errors associated with multi-temporal image registration, compounded by classification errors arising viI from seasonal differences, meant that the reliability of all identified incidences of change could not be validated. Nevertheless, post classification change detection was found to be the most useful approach for identifying the nature of change from one type of land use to another. The results of classification and change detection techniques were used to diagnose likely changes in catchment hydrology attributable to changes in land use. Preliminary hydrologic analyses found that catchment yield is more sensitive to changes in land use than runoff volume or peak flood discharge. This study confirms that SPOT imagery can be used for mapping and monitoring land use change in urban areas. SPOT imagery was found to be suitable for providing information on land use and land cover changes and assessing the likely hydrologic consequences of such change. The use of imagery from anniversary dates would further improve the reliability of hydrologic assessments based on remote sensing of land use change.
133

River conservation planning: accounting for condition, vulnerability and connected systems

Linke, Simon, n/a January 2006 (has links)
Conservation science in rivers is still lagging behind its terrestrial and marine counterparts, despite increasing threats to freshwater biodiversity and extinction rates being estimated as five times higher than in terrestrial ecosystems. Internationally, most protected rivers have been assigned reserve status in the framework of terrestrial conservation plans, neglecting catchment effects of disturbance. While freshwater conservation tools are mainly index based (e.g. richness, rarity), modern terrestrial and marine conservation planning methods use complementarity-based algorithms - proven to be most efficient at protecting a large number of taxa for the least cost. The few complementarity-based lotic conservation efforts all use broad river classifications instead of biota as targets, a method heavily disputed in the literature. They also ignore current condition and future vulnerability. It was the aim of this thesis to develop a framework for conservation planning that: a) accounts for the connected nature of rivers b) is complementarity based and uses biota as targets c) integrates current status and future vulnerability I developed two different approaches using macroinvertebrate datasets from Australia, Canada and the USA. The first new method was a site/based two-tiered approach integrating condition and conservation value, based on RIVPACS/AUSRIVAS � a modelling technique that predicts macroinvertebrate composition. The condition stage assesses biodiversity loss by estimating a site-specific expected assemblage and comparing it to the actual observed assemblage. Sites with significant biodiversity loss are flagged for restoration, or other management actions. All other sites progress to the conservation stage, in which an index of site-specific taxonomic rarity is calculated. This second index (O/E BIODIV) assesses the number of rare taxa (as defined by &lt50% probability of occurrence). Using this approach on a dataset near Sydney, NSW, Australia, I was able to identify three regions: 1) an area in need of restoration; 2) a region of high conservation value and 3) an area that had high conservation potential if protection and restoration measures could counteract present disturbance. However, a second trial run with three datasets from the USA and Canada highlighted problems with O/E (BIODIV). If common taxa are predicted at lower probabilities of occurrence (p&lt50%) because of model error, they enter the index and change O/E (BIODIV). Therefore, despite an attractive theoretical grounding, the application of O/E (BIODIV) will be restricted to datasets where strong environmental gradients explain a large quantity of variation in the data and permit accurate predictions of rare taxa. It also requires extensive knowledge of regional species pools to ensure that introduced organisms are not counted in the index. The second approach was a proper adaptation of terrestrial complementarity algorithms and an extension to the Irreplaceability-Vulnerability framework by Margules and Pressey (2000). For this large-scale method, distributions for 400 invertebrate taxa were modeled across 1854 subcatchments in Victoria, Australia using Generalised Additive Models (GAMs). The best heuristic algorithm to estimate conservation value was determined by calculating the minimum area needed to cover all 400 taxa. Solutions were restricted to include rules for the protection of whole catchments upstream of a subcatchment that contained the target taxon. A summed rarity algorithm proved to be most efficient, beating the second best solution by 100 000 hectares. To protect 90% of the taxa, only 2% of the study area need to be protected. This increases to 10% of the study area when full representation of the targets is required. Irreplaceability was calculated by running the heuristic algorithm 1000 times with 90% of the catchments randomly removed. Two statistics were then estimated: f (the frequency of selection across 1000 runs) and average c (contribution to conservation targets). Four groups of catchments were identified: a) catchments that have high contributions and are always selected; b) catchments that have high contributions and are not always selected; c) catchments that are always chosen but do not contribute many taxa; d) catchments that are rarely chosen and did not contribute many taxa. Summed c, the sum of contributions over 1000 runs was chosen as an indicator of irreplaceability, integrating the frequency of selection and the number of taxa protected. Irreplaceability (I) was then linked to condition (C) and vulnerability (V) to create the ICVframework for river conservation planning. Condition was estimated using a stressor gradient approach (SGA), in which GIS layers of disturbance were summarised to three principal axes using principal components analysis (PCA). The main stressor gradient � agriculture � classified 75% of the study area as disturbed, a value consistent with existing assessments of river condition. Vulnerability was defined as the likelihood that land use in a catchment would intensify in the future. Hereby current tenure was compared to land capability. If a catchment would support a land use that would have a stronger effect on the rivers than its current tenure, it was classified as vulnerable. 79% of catchments contained more than 50% vulnerable land. When integrating the three estimators in the ICV-framework, seven percent of catchments were identified as highly irreplaceable but in degraded condition. These were flagged for urgent restoration. Unprotected, but highly irreplaceable and highly vulnerable catchments that were still in good condition made up 2.5% of the total area. These catchments are prime candidates for river reserves. The ICV framework developed here is the first method for systematic conservation planning in rivers that is complementarity-based, biota-driven but flexible to other conservation targets and accounts for catchment effects, thus fulfilling all the gaps outlined in the aims.
134

Simulations of groundwater levels and soil water content : Development of a conceptual hydrological model with a continous soil profile / Simulering av grundvattennivå och markvatteninnehåll : Utveckling av en konceptuell hydrologisk modell med kontinuerlig markprofil

Berg, Karin January 2003 (has links)
<p>Transport of chemical substances through a catchment depend to a large extent on the water content of the soil through which they are transported. When the groundwater level rise and fall, redox conditions change in the soil and the transport of substances is affected. </p><p>The aim of this study is to develop a hydrological model which is able to simulate soil water content at different depths and groundwater level in a soil profile. A new type of conceptual model is developed, which uses a continous represenation of the soil and soil water from the soil surface down to the bedrock. The model is intended to be applied on small catchments at a later stage. </p><p>The results show that the simulation of groundwater levels was greatly improved compared to previous results. Simulation of soil water content at selected depths is not yet satisfactory. The runoff simulation was accurate at one of the sites but did not work as well at the other. At one of the sites it was also possible to combine good simulations of runoff and groundwater levels but at the other it was only possible to obtain acceptable simulations of either runoff or groundwater. </p><p>It is suggested that model performance could be improved by letting the porosity decrease and the soil water content increase non-linearly with depth. Calculations of evaporation from soil and runoff also need to be modified.</p>
135

Nutrients and runoff in a small catchment during spring 2010

Skoog, Peter, Bodin-Sköld, Henrik January 2010 (has links)
<p>Eutrophication is an increasing problem in the Baltic Sea and is caused by an excess of nutrients in the water which are primarily transported with the runoff from cultivated land. The peninsula Vikbolandet in Östergötland is dominated by arable land and has stream outflows to the bays of Bråviken and Slätbaken. In this study five streams of Vikbolandet have been sampled during the spring flood period with the aim of connecting concentrations of nutrients in the streams with turbidity and runoff in the catchment. This analysis has then been related to the land use in the small catchment of Vadsbäcken in order to investigate the impact of land uses with areal losses of phosphorus. The results indicate that there are increasing concentrations of phosphorus downstream in the sites of Vadsbäcken and that the transported amounts of phosphorus increases with the spring flood and at a rainstorm event. It is shown that the distribution of agricultural blocks in the catchment of Vadsbäcken has a major impact on the nutrient leakage. There is a co-variation between turbidity and runoff during a rainstorm event and between particulate-bound phosphorus and runoff over time. A further aim has been to investigate possibilities for use of an easily managed, cost-effective environmental monitoring method for nutrient measurements in watercourses. Within four out of five streams at Vikbolandet there is a significant co-variation between turbidity and total phosphorus. Using field measurements of turbidity for environmental monitoring could provide a viable alternative for environmental monitoring of watercourses but will need further investigations of co-variation before being brought into use. Further, this study shows that the transport of phosphorus is underestimated in environmental monitoring</p>
136

Muddy floods in the Belgian loess belt : problems and solutions

Evrard, Olivier 24 April 2008 (has links)
The first part of this thesis aims at defining the conditions triggering muddy floods in the Belgian loess belt. On average, each municipality is confronted with 3.6 muddy floods each year. Annual costs associated with their off-site impacts are estimated at € 16-172 millions for the entire Belgian loess belt. A topographic threshold is derived to predict the source areas of muddy floods. Furthermore, the storms required to produce a flood are, on average, smaller in May and June (25 mm) than between July and September (46 mm). This difference is explained by the variability of soil surface characteristics that determine the runoff potential of cultivated soils (soil cover by crops and residues, soil surface crusting and roughness). Steady state infiltration rates of cropland and grassed areas were characterised in the field using a 0.5 m2-portable rainfall simulator. Overall, grassed areas have a lower infiltration rate (16-23 mm h-1) than croplands (25-52 mm h-1). Muddy floods are mostly observed between May-September because of the coincidence of critical soil surface conditions for runoff generation with the most erosive storms. After an adaptation of its decision rules to the local conditions, the STREAM expert-based model provides satisfactory runoff/erosion predictions at the catchment scale. The second part of the thesis aims at evaluating the effectiveness of measures to control muddy floods. A modelling case-study showed that peak discharge was reduced by more than 40% by installing a grassed waterway and a dam at the outlet of a 300 ha-catchment. Monitoring the same catchment (2002-2007) demonstrated that the grassed waterway as well as three dams prevented any muddy flood in the downstream village despite the occurrence of several extreme storms (with a maximum return period of 150 years). Peak discharge was reduced by 69%. Specific sediment yield dropped from 3.5 t ha-1 yr-1 to a mean of 0.5 t ha-1 yr-1 after the installation of the control measures, thereby reducing drastically sediment transfer to the alluvial plain. Finally, a methodology is provided to implement grassed waterways and earthen dams in other dry valleys in the Belgian loess belt and comparable environments.
137

Use of soil moisture dynamics and patterns at different spatio-temporal scales for the investigation of subsurface flow processes

Blume, Theresa, Zehe, Erwin, Bronstert, Axel January 2009 (has links)
Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and binary indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeterscale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a datascarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.
138

Analysing the temporal dynamics of model performance for hydrological models

Reusser, Dominik, Blume, Theresa, Schaefli, Bettina, Zehe, Erwin January 2009 (has links)
The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or model structure. Dealing with a set of performance measures evaluated at a high temporal resolution implies analyzing and interpreting a high dimensional data set. This paper presents a method for such a hydrological model performance assessment with a high temporal resolution and illustrates its application for two very different rainfall-runoff modeling case studies. The first is the Wilde Weisseritz case study, a headwater catchment in the eastern Ore Mountains, simulated with the conceptual model WaSiM-ETH. The second is the Malalcahuello case study, a headwater catchment in the Chilean Andes, simulated with the physicsbased model Catflow. The proposed time-resolved performance assessment starts with the computation of a large set of classically used performance measures for a moving window. The key of the developed approach is a data-reduction method based on self-organizing maps (SOMs) and cluster analysis to classify the high-dimensional performance matrix. Synthetic peak errors are used to interpret the resulting error classes. The final outcome of the proposed method is a time series of the occurrence of dominant error types. For the two case studies analyzed here, 6 such error types have been identified. They show clear temporal patterns, which can lead to the identification of model structural errors.
139

Emerging Farmers in Water User Associations Cases from the Breede Water Management Area.

Saruchera, Davison. 2008. January 2008 (has links)
<p>The aim of the study is to understand the level of co-operation between emerging and commercial farmers in a Water User Associations. The effort is expected to inform policy and improve practice in the building of new water institutions as government strives to implement IWRM.</p>
140

EstimatingChloride concentration in surface water and groundwater duet to deicing salt application

Thunqvist, Eva-Lotta January 2003 (has links)
A road in operation along with its traffic can pose aserious pollutant threat to groundwater and surface water inits vicinity. Examples of pollutants are metals from thecorrosion of vehicles, rails and poles and the wear of roadsurfaces and tyres; hydrocarbons from the wear of roadsurfaces, tyres, exhausts, oils; sodium chloride from roadsalt; and hazardous goods discharged in accidents. Eventuallypollutants that are not degraded or retarded in soil will reachgroundwater and surface water. The chloride ion in deicing saltis a good tracer. It is conservative and highly soluble and notsubject to retardation or degradation. If the chlorideconcentration has increased in groundwater or surface water inthe vicinity of a deiced road, other road-related pollutantsmight also be present in the water. Increased chloride concentrations have been observed inseveral water supplies, in groundwater as well as in surfacewater, since the 1970s. The number of affected water supplieshas also increased. The increase in chloride concentration inwaters is concurrent with the increase in deicing saltapplication and it is clear that most of the increase is due tothe application of deicing salt. The thesis presents a simple tool that quantified theincrease in chloride concentration for water in a catchmentarea, based on a steady-state water balance. The data wereefficiently processed and presented as maps with GIS. At aregional catchment area scale, substantially increased chlorideconcentrations were calculated. The variation between catchmentareas was verified by a national monitoring programme of lakes.Deicing salt application was estimated to account for more thanhalf of the total chloride load for a catchment area in the midsouth of Sweden. A distributed dynamic method was used to evaluate thetemporal and spatial variation of the chloride concentration inan aquifer. The distributed dynamic approach integrated thespreading of deicing salt from the road with the infiltrationin the unsaturated zone in the soil, which in turn wasintegrated with the groundwater flow. The simulation was runfor a 40-year period and showed a potential to describe aspecific system. <b>Keywords:</b>road, deicing salt, monitoring, chloride,catchment area, river basin, simulation, GIS, groundwater,surface water

Page generated in 0.0743 seconds