• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 52
  • 37
  • 19
  • 13
  • 8
  • 8
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 162
  • 37
  • 35
  • 33
  • 23
  • 22
  • 22
  • 19
  • 15
  • 15
  • 13
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Genetische Analyse des Cathepsin L bei chronischer Pankreatitis

Herms, Max 03 May 2012 (has links)
Die chronische Pankreatitis (CP) ist eine wiederkehrende, entzündliche Erkrankung des Pankreas. In den letzten Jahren wurden mehrere Kandidatengene, die zur Entstehung einer CP prädisponieren, identifiziert. Zu diesen Genen gehören PRSS1, PRSS2, SPINK1, CFTR und CTRC. Der Pathogenese der genetisch bedingten CP scheint dabei eine frühzeitige, intrapankreatische Aktivierung von Trypsin zugrunde zu liegen. Cathepsin B (CTSB), eine in Lysosomen vorkommenden Protease, ist in der Lage Trypsinogen zu aktivieren. Genetisch zeigte sich eine Assoziation der p.L26V Variante bei tropisch-kalzifizierender CP, welche bei idiopathischer CP nicht bestätigt wurde. Neben CTSB ist CTSL die am zweithäufigsten vorkommende lysosomale Protease. Funktionelle Untersuchungen zeigten, dass CTSL ein inaktives Trypsin freisetzt. Im Mausmodell zeigten sich bei Ctsl-/- Tieren bei experimentell induzierter Pankreatitis zwei Effekte. Zum einen war die Trypsinaktivität erhöht, zum anderen verlief die Pankreatitis milder, da vermehrt Apoptose anstelle von Nekrose der Azinuszellen auftrat. In dieser Studie wurde mittels uni-direktionaler DNA-Sequenzierung das gesamte CTSL1 untersucht. Dabei fanden wir insgesamt drei seltene nicht-synonyme Varianten. Die Variante c.5A>C (p.N2T, rs112682750) fanden wir bei einem Patienten, wobei diese Variante bereits bei Kontrollen beschrieben wurde. Die Varianten c.126+1G>A und c.915A>C (p.E305D) lagen bei jeweils einer Kontrolle vor. Sowohl seltene als auch häufige Varianten und die berechneten Haplotypen zeigten keinen signifikanten Verteilungsunterschied zwischen Patienten und Kontrollen. Demnach besteht keine Assoziation von Varianten des CTSL1 und CP.
22

Functional characterization of the Cydia pomonella granulovirus matrix metalloprotease

Ishimwe, Egide January 1900 (has links)
Master of Science / Department of Biology / A. Lorena Passarelli / Cydia pomonella granulovirus (CpGV) is a member of the Baculoviridae family of viruses. The CpGV open reading frame 46 (CpGV-ORF46) predicts a 545 amino acid protein that shares homology with matrix metalloproteases (MMPs), a family of zinc-dependent endopeptidases that degrade extracellular matrix proteins. In silico analyses revealed the presence of putative mmp genes in all species from the Betabaculovirus genus, while no mmps were identified in members of the Alphabaculovirus, Gammabaculovirus or Deltabaculovirus genera. Unlike most cellular MMPs, baculovirus MMPs do not have a propeptide domain, a domain involved in regulating MMP activation, or a hemopexin-like domain, which is necessary for substrate binding and specificity in many MMPs. However, Betabaculovirus MMPs do contain a predicted conserved zinc-binding motif (HEXGHXXGXXHS/T) within their catalytic domain. The function of CpGV-MMP and its effects on baculovirus replication in cultured cells and insect larvae were investigated. CpGV-MMP was expressed in and purified from Escherichia coli, and activity was measured using a generic MMP substrate in vitro. CpGV-MMP had in vitro activity and its activity was specifically inhibited by MMP inhibitors. To study the effects of CpGV-MMP on virus replication and dissemination, CpGV-MMP was expressed from Autographa californica nucleopolyhedrovirus (AcMNPV) under the control of a strong and constitutive promoter, the Drosophila heat shock 70 protein promoter. Expression of CpGV-MMP did not affect virus replication in cultured cells. The effects of expressing CpGV-MMP from AcMNPV during larval infection were evaluated in the presence or absence of the AcMNPV chitinase and cathepsin genes. Insect bioassays showed that the absence of cathepsin resulted in a significant delay in larval time of death; however, this delay was compensated by expression of CpGV-MMP. In addition, larval time of death was accelerated when cathepsin, chitinase, and CpGV-MMP were all expressed. Finally, we determined the effects of CpGV-MMP on larvae melanization and liquefaction. CpGV-MMP was able to promote larvae melanization in the absence of cathepsin. CpGV-MMP, in the absence of cathepsin, was not able to promote larvae liquefaction. When chitinase was engineered to be secreted from cells, CpGV-MMP rescued liquefaction in the absence of cathepsin. In conclusion, CpGV-MMP is a functional MMP which can enhance larvae mortality with the presence of cathepsin. In addition, CpGV-MMP can promote larvae melanization; however, it can only promote liquefaction when chitinase is engineered to be secreted from cells.
23

Identification of Cathepsin B and L as Novel Uva Targets Upstream of Cutaneous Lysosomal-Autophagic Dysregulation

Lamore, Sarah Diane January 2012 (has links)
Chronic exposure to solar UVA plays a causative role in skin photoaging and photocarcinogenesis. Guided by exploratory difference-in-gel-electrophoresis (DIGE)-proteomics, we identified the thiol-dependent cysteine-proteases cathepsin B and cathepsin L as novel UVA-targets undergoing photo-oxidative inactivation upstream of autophagic-lysosomal dysfunction. In human skin fibroblasts, exposure to noncytotoxic doses of chronic UVA (9.9 J/cm ², twice a week, 3 weeks) caused pronounced photooxidative impairment of cathepsin B and L enzymatic activity suppressed by antioxidant intervention. Western blot analysis revealed extensive 4-hydroxy-2-trans-nonenal (4-HNE) modification of cathepsin B in UVA-exposed fibroblasts. Consistent with lysosomal impairment, accumulation of cellular autofluorescent material colocalizing with lysosomes was observed by confocal fluorescence microscopy, and extensive deposition of lipofuscin was detectable by transmission electron microscopy (TEM). Lysosomal expansion was further evidenced by increased immunodetection of lysosomal associated membrane protein-1 (Lamp-1) and Lysotracker-based flow cytometric analysis. While lysosomal membrane integrity remained intact, autophagic blockade was suggested by accumulation of cellular protein levels of LC3-II and p62 (sequestosome 1) in UVA-exposed fibroblasts. Furthermore, UVA-exposure modulated transcriptional levels of p62 (sequestosome 1, SQSTM1), α-synuclein (SNCA), and transglutaminase-2 (TGM2). Strikingly, pharmacological cathepsin B/L inhibition using CA074Me mimicked UVA-induced accumulation of lipofuscin and autophagic-lysosomal proteins (Lamp-1, LC3-II, and p62), as well as changes at the transcriptional levels. In order to determine if UVA-induced lysosomal impairment requires single or dual inactivation of cathepsin B and/or L, we used a genetic approach (siRNA) to selectively downregulate enzymatic activity of these target cathepsins. Monitoring protein levels of Lamp-1, LC3-II, and p62, we observed that only dual genetic antagonism (targeting both CTSB and CTSL expression) could mimic UVA-induced autophagic-lysosomal alterations, whereas single knockdown (targeting CTSB or CTSL only) did not reproduce the UVA-induced phenotype. Similarly, TEM revealed massive accumulation of lipofuscin-containing lysosomal vesicles in fibroblasts only after CTSB/CTSL-double knockdown. Taken together, our data indicate for the first time that UVA impairs lysosomal function causing autophagic-lysosomal alterations downstream of cathepsin B/L enzymatic inactivation. This work provides evidence for a heretofore unrecognized 'double-hit' mechanism of UVA skin photodamage where primary photo-oxidative insult occurs simultaneously with impaired clearance of damaged molecules and organelles downstream of dual inactivation of cathepsin B and L.
24

Induction of auto-antibodies to Cathepsin B.

Moolman, Lizette. 08 November 2013 (has links)
Because tumours are comprised of "self" cells and antigens, they escape recognition by the immune system, which discriminates between "self" and "non-self". One such antigen is cathepsin B, a lysosomal cysteine proteinase, that has been implicated as one of the proteolytic enzymes involved in tumour invasion and metastasis. Cathepsin B autoantibodies could open possibilities which may be useful in cancer immunotherapy. In this study generation of cathepsin B autoantibodies was attempted by manipulating the immune system into recognising and responding to cathepsin B in complex with a "foreign" protein, bovine serum albumin (BSA). Cathepsin B was isolated from rabbit liver using the three phase partitioning (TPP) method, modified by adding t-butanol in the homogenisation buffer. Isolation of cathepsin Band cathepsin L, using this novel method, minimised the formation of artefacts such as a covalent cathepsin L-stefin B complex and produced higher yields of enzyme. Pure rabbit liver cathepsin B was conjugated to BSA, using glutaraldehyde as coupling agent, and administered intramuscularly into rabbits. Another three inoculation protocols, which functioned as controls were: i) free cathepsin B administered intramuscularly, ii) complexed cathepsin B administered intravenously, and iii) free cathepsin B administered intravenously. IgGs isolated from inoculated rabbits' serum were assayed by a three layer ELISA system, immunoinhibition assays and dot blots. The anti-complex (intramuscular) antibodies showed the highest recognition for cathepsin B and were the only antibodies that were immunoinhibitory. This suggests that the immune system was, to some extend, successfully manipulated into recognising the complexed "self" cathepsin B. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 2001.
25

Katepsiny B ptačí schistosomy Trichobilharzia regenti / Cathepsins B of the bird schistosome, Trichobilharzia regenti

Dolečková, Kateřina January 2010 (has links)
1. Overview Schistosomes have achieved first position among parasitic helminths, because some of them are the etiological agents of a serious human parasitic disease, schistosomiasis, which affects over 200 million people in tropical and subtropical countries (WHO, 2001). Other schistosomatids, such as the bird flukes of the genus Trichobilharzia, have also implications for human health. Although they can mature only in specific hosts (birds), their invasive larvae - cercariae - are able to penetrate also human skin due to chemical signals similar to those present on bird skin (Haas and van de Roemer 1998). Repeated infections result in an inflammatory reaction of the skin called cercarial dermatitis. Due to the increasing number of outbreaks all around the world, cercarial dermatitis is cons disease (Kolářová 2007idered as re-emerging ; Larsen et al. 2004). Among schistosomes, Trichobilharzia regenti is the only species described so far having a unique migration route within vertebrate hosts: after penetration of the skin, the invasive larvae enter peripheral nerves and continue via the spinal cord and central nervous system to the nasal cavity of birds, causing neuromotor disorders or paralyses of birds and even experimental mammals (Hrádková...
26

Untersuchungen zur Autophagieinduktion in Leishmania major-infizierten Knochenmarksmakrophagen / Analyses of autophagy induction in Leishmania major-infected bone marrow-derived macrophages

Frank, Benjamin January 2015 (has links) (PDF)
Die von der WHO zu den 17 wichtigsten NTDs gezählte Leishmaniose wird durch intrazelluläre Parasiten der Gattung Leishmania hervorgerufen. Der Lebenszyklus der Parasiten besteht aus zwei Phasen. Die länglichen und beweglichen Promastigoten kennzeichnen die Phase in der Sandmücke – der Vektor der Leishmaniose. Hingegen ist die Phase im Säugerwirt durch runde unbewegliche Amastigoten charakterisiert. Aufgrund des Mangels an potenten antileishmanialen Therapien wurde in der vorliegenden Arbeit die Interaktion zwischen L. m. Parasiten und der Hauptwirtszelle, der Makrophage, v. a. in Hinblick auf autophage Prozesse in den infizierten Makrophagen näher untersucht, um demgemäß neue Erkenntnisse zu gewinnen, welche bei der Herstellung zukünftiger anti-leishmanialer Medikamente helfen könnten. Bei der Autophagie handelt es sich um einen katabolen Prozess, wodurch Zellen bei Nahrungsmangel oder zellulärem Stress ihre Homöostase erhalten können. Durch diesen Prozess können überflüssige oder beschädigte Organellen recycelt werden, um die Funktionen der Zelle aufrechtzuerhalten. Daneben übernimmt Autophagie auch eine essenzielle Rolle bei der Abwehr von ins Zytosol eindringenden Pathogenen. Mittels des neu etablierten totalen Autophagiescore konnte festgestellt werden, dass Autophagie in L. m.-infizierten BMDM induziert wird. Die intrazellulären Amastigoten werden durch Autophagie in den BMDM verdaut. Die erhöhte autophage Aktivität konnte zudem durch Western-Blot-Analysen der autophagierelevanten Proteine ATG5, LC3B und UB bestätigt werden. Die molekulargenetischen Untersuchungen von L. m.-infizier-ten BMDM mithilfe von Affymetrix Microarrays führten zu einem Netzwerk aus autophagierelevanten und infektionsspezifischen Genen, welches als LISA bezeichnet worden ist. Hier hat sich ebenfalls eine starke Verknüpfung von autophagierelevanten Genen und den Genen der Glykolyse, einem zweiten katabolen Prozess, gezeigt. Zudem konnten zwei weitere autophagierelevante und infektionsspezifische Gene außerhalb von LISA identifiziert werden, nämlich Bnip3 und Ctse, welche im Anschluss genauer untersucht worden sind. Bei beiden Genen konnte auf Proteinebene gezeigt werden, dass sie in L. m.-infizierten BMDM signifikant erhöht sind. Durch siRNA-Analysen konnte überdies beobachtet werden, dass beide für die erfolgreiche Elimination der Amastigoten essenziell sind. Somit konnte mit den Proteinen BNIP3 und CTSE zwei potenzielle neue Ansatzpunkte für mögliche zukünftige antileishmaniale Therapien gefunden werden. Auch die in LISA enthaltenen Gene stellen prinzipiell vielversprechende Ziele für künftige Medikamente gegen Leishmaniose dar. Durch all diese Untersuchungen kommt man dem Ziel einer neuen, gezielten und nebenwirkungsärmeren Behandlung der Leishmaniose einen Schritt näher. / Leishmaniasis, listed by the WHO to be one of the 17 most important NTDs, is caused by intracellular parasites of the genus Leishmania. The life cycle of the parasites consists of two stages. The oblong and motile promastigotes characterize the stage in the sand fly, the vector of leishmaniasis. However, the stage in the vertebrate host is characterized by round immotile amastigotes. Due to a lack of capable antileishmanial therapies, the interaction between L. m. parasites and their main host cell, the macrophage, was investigated in the present work, huge focus on autophagic processes in infected macrophages. Our goal was to get new insights for the future production of antileishmanial drugs. Autophagy is a catabolic process whereby cells are able to maintain their homeostasis in times of starvation or cellular stress. During to this process, redundant or damaged organelles are recycled in order to sustain cellular viability. Furthermore, autophagy has an essential role in the defense of pathogens invading the cytosol. The newly established total autophagy score showed an autophagy induction in L. m.-infected BMDM. Intracellular amastigotes are digested by autophagy in BMDM. The increased autophagic activity could also be confirmed by western-blot analyses of the autophagy-relevant proteins ATG5, LC3B, and UB. Molecular genetic investigations of L. m.-infected BMDM by Affymetrix microarrays led to a network of autophagy-relevant and infection-specific genes, which was called LISA. Additionally, it showed a strong connection between autophagy-relevant genes and genes of the glycolysis, a second catabolic process. Moreover, we identified and further characterized two additional autophagy-relevant genes, Bnip3 and Ctse, which were not included in LISA. Both genes were significantly overexpressed on protein level in L. m.-infected BMDM. By siRNA analyses we also demonstrated their importance for successful elimination of amastigotes. Therefore, both proteins, BNIP3 and CTSE, could be new potential targets for possible future antileishmanial therapies. In addition, the genes included in LISA might be promising targets for future drugs against leishmaniasis. Due to all these investigations we are one step closer to our goal of a targeted and safe therapy of leishmaniasis.
27

Expression of stage-specific Fasciola proteases and their evaluation in vaccination trials

Jayaraj, Ramamoorthi, Jayaraj@menzies.edu.au January 2008 (has links)
The liver flukes Fasciola hepatica and F. gigantica cause infectious disease in ruminants and humans. The geographical range of these two parasite species (temperate and tropical respectively) ensures that infection can occur worldwide. Although anthelmintic treatment is effective against disease, emerging drug resistant strains leads to the development of a vaccine. However, despite several decades of research, there is no commercial vaccine available. The main challenge at present is to produce recombinant proteins in an immunologically active form using recombinant DNA technology. This is an essential step in Fasciola vaccine production. Cysteine proteases are probably the most important facilitators of virulence in flukes and are produced by all stages of the fluke life-cycle. Two classes of cysteine protease are found in the excretory and secretory material of liver flukes- these are cathepsin L and cathepsin B. As such, the major aims of this thesis were to investigate the expression and purification of Fasciola recombinant cysteine proteins, and characterisation by SDS-PAGE and immunoblotting using monoclonal and polyclonal antibodies. These studies demonstrate the production of functionally active cathepsin proteins in S. cerevisiae BJ3505 cells which will lead to vaccine candidate analysis. The second aim of this thesis was to determine the protective efficacy of stage specific target antigens against experimental infection. In addressing this issue, the protective efficacy of single and multivalent recombinant protein vaccinations of adult stage F. hepatica cathepsin L5, immature F. gigantica cathepsin L1g and juvenile F. hepatica cathepsin B were analysed in Sprague Dawley rats against F. hepatica infection. This study demonstrates that juvenile fluke target antigen-cathepsin B induces better immune protection than adult fluke antigen-cathepsin L5. Cocktails of juvenile and adult stage fluke recombinant proteins (cathepsin B and L5) elicited the highest protective immunity against experimental infection and this combination showed not only reduction in fluke recovery and size of flukes, but also marked diminution in the intensity of liver lesions in vaccinated rats. In order to assess the immunogenic property of an early infective stage fluke secreting cysteine protease as a vaccine candidate, DNA vaccination vectors encoding cathepsin B were analysed in BALB/c mice. In this study, the ability of four DNA vaccination strategies such as secretory, chemokine-activating, lymph node targeting vectors encoding cathepsin B were assessed by antibody titre, antibody avidity, western blotting and ELIPSOT assay. The results have further validated the immunoprophylactic potential of a cathepsin B vaccine against F. hepatica. In this study, we have expressed and attained high yields of F. gigantica cathepsin L1g from E. coli BL21, and compared this to a yeast-expressed system. This protease was over-expressed and formed insoluble inclusion bodies that were subsequently solubilised with urea or guanidine hydrochloride. In order to purify the urea-solubilised protein, step-wise urea gradient chromatography was used. For refolding of solubilised protein, a dilution and dialysis procedure was utilised. Proteolytic activity was confirmed by gelatin SDS-PAGE analysis. In conclusion, the determination of the immune potential of recombinant stage specific antigens allows the development of effective vaccines against Fasciola infection.
28

Role of Cathepsin G in Atherosclerosis

Rafatian, Naimeh 11 January 2013 (has links)
Angiotensin II (Ang II) is an important modulator for development of atherosclerosis from early stage foam cell formation to advanced stage plaque rupture. Recently, the importance of locally generated Ang II, especially in macrophages, has become more evident. Generation of Ang II by several enzymes other than ACE and renin has been shown mainly in vitro. Cathepsin G is one these enzymes which is expressed in neutrophils and macrophages. Macrophages are one of the primary and crucial cells in atherosclerotic lesions which become lipid-laden foam cells through lipoprotein uptake. We hypothesized that activation of nuclear factors in foam cells increases Ang II by modulation of the renin angiotensin system (RAS) genes and cathepsin G. We also hypothesized that cathepsin G, through its Ang II generating activity and its other catalytic functions, promotes atherosclerosis. The present study assessed the Ang I and II levels and expression of the RAS genes in THP-1 cells, a human acute monocytic leukemia cell line, and in peritoneal and bone marrow-derived macrophages after exposure to acetylated LDL (ac-LDL). I also evaluated how RAS blockade would affect foam cell formation in THP-1 cells. In parallel, I assessed the role of cathepsin G in Ang II generation and in the progression of atherosclerosis in cathepsin G heterozygous knockout mice on an Apoe-/- background (Ctsg+/-Apoe-/- mice). Ac-LDL treatment increased Ang I and Ang II levels in cell lysates and media from THP-1 cells but not in peritoneal or bone marrow-derived macrophages from wild type C57BL/6 mice. In ac-LDL-treated THP-1 cells, ACE and cathepsin G mRNA levels and activities were elevated. Angiotensinogen mRNA is increased but not the angiotensinogen protein concentration. Renin mRNA level and activity were not altered by ac-LDL treatment. Blocking RAS by an AT1 receptor blocker, ACE inhibitors or a renin inhibitor decreased cholesteryl ester content of THP-1 cells after exposure to ac-LDL. To confirm that the Ang II effect on foam cell formation was not unique to ac-LDL, we treated the THP-1 macrophages with a renin inhibitor or an AT1 receptor inhibitor after exposure to oxidized LDL (ox-LDL). RAS blockade in ox-LDL-treated cells also abolished cholesteryl ester formation. To see how Ang II plays a role in foam cell formation we assessed the effect of RAS inhibitors on SR-A, the principal receptor for mediating ac-LDL entry into the cells and on acyl-CoA:cholesterol acyl transferase (ACAT-1), the enzyme responsible for intracellular cholesterol esterification. RAS blockade in both ac-LDL- and ox-LDL-treated cells decreased SR-A and ACAT-1 protein levels. Cathepsin G partial deficiency on an Apoe-/- background did not change Ang II levels in peritoneal or bone marrow-derived macrophage cell lysates or media. This deficiency also did not affect immunoreactive angiotensin peptide levels in atherosclerotic lesions. After 8 weeks on a high fat diet Ctsg+/-Apoe-/- mice were similar to Ctsg+/+Apoe-/- mice in terms of lesion size and serum cholesterol levels but the Ctsg+/+Apoe-/- mice had more advanced lesions with more collagen and smooth muscle cells and fewer macrophages. Moreover, Ctsg+/+Apoe-/- mice had more apoptotic cells than their Ctsg+/-Apoe-/- littermates. Overall, our findings indicate that Ang II is increased in foam cells and this endogenous Ang II is involved in cholesteryl ester formation, possibly by regulating the levels of ACAT-1 and SR-A. We did not find any role for cathepsin G in generation of Ang II in mice but cathepsin G does, nevertheless, promote the progression of atherosclerotic lesions to a more advanced stage.
29

Anti-arthritic effects of marine-derived compound obtained from gorgonian coral

Sun, Yu-min 19 July 2010 (has links)
Rheumatoid arthritis (RA) is a chronic, systemic inflammatory disorder that may affect many tissues and organs but principally attacks synovial joints. All the symptoms of RA are mainly caused by cell inflammation, which results in cellular infiltration and synovial hyperplasia, finally leading to severe bone erosion. Existing drugs (steroids, non-steroid antiinflammatory drugs, disease-modifying anti-rheumatic drugs, etc.) can attenuate the symptoms of RA; however, these drugs also have many side effects. Therefore, it is necessary to discover new drugs for RA. Excavatolide B (Exc-B) is derived from the gorgonian coral. In our preliminary observations, Exc-B strongly inhibited lipopolysaccharide (LPS)-induced proinflammatory inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression in RAW264.7 macrophages. The present study also showed that Exc-B significantly attenuates the expressions of osteoclast-like gene, cathepsin K, and matrix metalloproteinase (MMP)-9 in LPS-treated RAW 264.7 cells. Moreover, in the adjuvant-induced RA animal model, Exc-B effectively reduced the swelling and arthritic index from the morphological viewpoint as well as reduced bone erosion and synovial hyperplasia from the pathological viewpoint. Our data indicates that Exc-B can inhibit disease progression in RA. Hence, Exc-B may serve as a useful therapeutic agent for the treatment of RA.
30

Predicting patient-to-patient variability in proteolytic activity and breast cancer progression

Park, Keon-Young 08 June 2015 (has links)
About one in eight women in the United States will develop breast cancer over the course of her lifetime. Moreover, patient-to-patient variability in disease progression continues to complicate clinical decisions in diagnosis and treatment for breast cancer patients. Early detection of tumors is a key factor influencing patient survival, and advancements in diagnostic and imaging techniques has allowed clinicians to spot smaller sized lesions. There has also been an increase in premature treatments of non-malignant lesions because there is no clear way to predict whether these lesions will become invasive over time. Patient variability due to genetic polymorphisms has been investigated, but studies on variability at the level of cellular activity have been extremely limited. An individual’s biochemical milieu of cytokines, growth factors, and other stimuli contain a myriad of cues that pre-condition cells and induce patient variability in response to tumor progression or treatment. Circulating white blood cells called monocytes respond to these cues and enter tissues to differentiate into monocyte-derived macrophages (MDMs) and osteoclasts that produce cysteine cathepsins, powerful extracellular matrix proteases. Cathepsins have been mechanistically linked to accelerated tumor growth and metastasis. This study aims to elucidate the variability in disease progression among patients by examining the variability of protease production from tissue-remodeling macrophages and osteoclasts. Since most extracellular cues initiate multiple signaling cascades that are interconnected and dynamic, this current study uses a systems biology approach known as cue-signal-response (CSR) paradigm to capture this complexity comprehensively. The novel and significant finding of this study is that we have identified and predicted donor-to-donor variability in disease modifying cysteine cathepsin activities in macrophages and osteoclasts. This study applied this novel finding to the context of tumor invasion and showed that variability in tumor associated macrophage cathepsin activity and their inhibitor cystatin C level mediates variability in cancer cell invasion. These findings help to provide a minimally invasive way to identify individuals with particularly high remodeling capabilities. This could be used to give insight into the risk for tumor invasion and develop a personalized therapeutic regime to maximize efficacy and chance of disease free survival.

Page generated in 0.1236 seconds