• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 172
  • 45
  • 24
  • 16
  • 15
  • 13
  • 10
  • 10
  • 7
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 394
  • 100
  • 54
  • 43
  • 36
  • 33
  • 32
  • 32
  • 25
  • 22
  • 21
  • 21
  • 20
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

The Crystallographic Investigation of a Strontium Labradorite

Cordahi, George 15 June 2015 (has links)
Precession photography was used to determine the lattice parameters, the crystal system, the space group and the structure of an artificial Sr-labradorite of composition: Ab27, SrAn73. C= 7.107Å, Ɣ= 90 degrees, β= 115.834 degrees. The crystal system is monoclinic, space group= C2/ m and structure is albite type, reflections being restricted to the 'a' type. The abundance, lithophile characteristics and appropriate ionic radii of elements in Groups IA and IIA are the factors governing their presence as cations of feldspars in nature. The structures of feldspars are discussed as a function of the relative proportion of cations of a charge of +1 and +2. The crystal symmetry (i.e. monoclinicity or triclinicity) is discussed as a function of the ionic radius of the cation. / Thesis / Bachelor of Science (BSc)
172

Investigation of Temperature, Solution Strength, and Applied Stress Effects on Cation Exchange Processes in Geosynthetic Clay Liners

Katzenberger, Kurt 01 December 2022 (has links) (PDF)
A laboratory test program was conducted to investigate the effects of temperature, solution strength, and applied stress over increasing conditioning durations on cation exchange processes in sodium bentonite (Na-B) geosynthetic clay liners (GCLs). The test program was intended to determine if the variables of temperature, solution strength, and applied stress had beneficial or detrimental effects on the engineering behavior of Na-B GCLs in municipal solid waste (MSW) landfills and laboratory testing applications. Needlepunched-reinforced, double non-woven Na-B GCL specimens were conditioned in fluids of increasing ionic strength (DI water, 2 mM CaCl2, 50 mM CaCl2, and 200 mM CaCl2 representing control, pore water, mild MSW leachate, and harsh MSW leachate, respectively), temperatures of 5 degrees C, 20 degrees C, 40 degrees C, and 60 degrees C, and overburden stresses (30 kPa and 500 kPa representing stresses experienced by cover and bottom liner systems, respectively) which are all representative of geoenvironmental conditions observed in MSW landfill barrier systems. Cation exchange in the bentonite component of all conditioned Na-B GCL specimens was quantified by measuring the bound cation (BC) complexes and cation exchange capacities (CEC) of the specimens using inductively coupled plasma-optical emission spectroscopy (ICP-OES) analysis and by conducting index tests to determine the dimensional characteristics, swell index, and gravimetric moisture content of the specimens. For zero stress conditions, periodic measurements of electrical conductivity, total dissolved solids, sodium and calcium cation concentration, and temperature of the conditioning fluids were recorded to supplement bound cation complex data. For applied stress conditions, electrical conductivity, total dissolved solids, and temperature of the conditioning fluid were recorded. For zero stress conditions, 152 mm x 152 mm Na-B GCL specimens were conditioned in all conditioning fluids and temperatures over increasing time durations ranging from 4 hours to 32 days. For applied stress conditions, 60-mm-diameter Na-B GCL specimens were conditioned in 50 mM CaCl2 conditioning fluid at all temperatures for 4 to 16 days under the applied overburden stresses of 30 kPa and 500 kPa. Temperature, solution strength, and applied stress were all observed to affect cation exchange in the bentonite component of Na-B GCLs. Cation exchange processes were observed to increase with increasing temperature, increasing solution strength, and decreasing applied overburden stress. The majority of cation exchange processes were observed to occur within 8 to 10 days for specimens conditioned under zero stress. Cation exchange processes were observed to have a higher sensitivity to changes in solution strength (up to 625% increase in the change of Na+ BC from DI water to 200 mM CaCl2) compared to changes in temperature (up to 52% increase in the change of Na+ BC from 5 degrees C to 60 degrees C) in zero stress conditions. Changes in the bound cations of the Na-B GCL specimens over time were not reflected in the periodic electrical conductivity measurements taken of the high strength conditioning fluids. The results of this study can be used for quality assurance evaluations of in-service GCLs using thresholds developed for index properties. From the numerical thresholds determined in this study, hydrated Na-B GCL specimens sampled from the field conditioned under zero stress that exhibit swell indices greater than or equal to approximately 70% of the swell index reported by the manufacturer and gravimetric moisture contents of greater than or equal to approximately 200% will likely exhibit adequate hydraulic barrier performance. Hydrated Na-B GCL specimens sampled from the field conditioned under zero stress that exhibit swell indices of less than or equal to approximately 20% of the swell index reported by the manufacturer and gravimetric moisture contents of less than or equal to approximately 100% will likely exhibit inadequate hydraulic barrier performance. The Na-B GCL component of cover liner systems may be susceptible to high rates of cation exchange due to experiencing low overburden stress and elevated temperatures compared to typical earth temperatures. The Na-B GCL component of bottom liner systems may exhibit low rates of cation exchange due to experiencing high overburden stress and cooler temperatures.
173

Alter-Soni-Cation

Tramte, Daniel A. 27 July 2010 (has links)
No description available.
174

ALTERED RENAL ORGANIC CATION TRANSPORT IN STREPTOZOTOCIN-INDUCED DIABETES MELLITUS

GROVER, BRETT LORING 11 March 2002 (has links)
No description available.
175

CHARACTERIZATION OF LIGHT SICKLE ERYTHROCYTES DERIVED FROM DENSE ERYTHROCYTES IN VITRO

HOLTZCLAW, JOHN DAVID 11 October 2001 (has links)
No description available.
176

Effect of Finite Geometry on Solidification Microstructure in Beam-Based Fabrication of Thin Wall Structures

Kuchi, Satish C. 30 September 2009 (has links)
No description available.
177

Cation Channels as Regulators and Effectors of NLRP3 Inflammasome Signaling and IL-1 Beta Secretion

Katsnelson, Michael Alexander January 2015 (has links)
No description available.
178

Characterization and Control of ZnGeN2 Cation Lattice Ordering and a Thermodynamic Model for ZnGeN2-ZnSnN2 Alloy Growth

Blanton, Eric Williams 27 January 2016 (has links)
No description available.
179

Novel Regenerable Adsorbents for Wastewater Treatment from Wet Flue Gas Scrubbers

Sanghavi, Urvi January 2016 (has links)
No description available.
180

STRONG FIELD MOLECULAR IONIZATION: CONTROLLED DISSOCIATION IN RADICAL CATIONS WITH DYNAMIC RESONANCES AND ADIABATICALLY PREPARED LAUNCH STATES

Bohinski, Timothy Blaise January 2015 (has links)
This dissertation investigates the electronic spectroscopy of a series of alkyl phenyl ketone radical cations and the dynamics of selective launch states in the strong field regime with tunable near infrared ultrashort laser pulses from 790 nm - 1550 nm coupled to mass spectrometric detection. Our method relies on tunable strong field laser pulses in the range from 1150 nm - 1550 nm to adiabatically ioinized gas phase molecules and prepare ions in the ground ionic state that serve as a launch state for future excitation and control. Adiabatic ionization is capable of transferring little energy to the molecule and producing a majority of a parent molecular ion in comparison to nonadiabatic ionization wherein multiple ionic states can be populated with an accompanying high degree of molecular fragmentation. We measure a dynamic resonance in the low lying electronic states of the acetopheone radical cation via preparation of a launch state with adiabatic ionization followed by a one photon transition within a single pulse duration which facilitates bond dissociation to produce the benzoyl ion. Experiments on acetophenone homologues and derivatives elucidate the structural dependence of the electronic resonance and supporting ab initio calculations identify the dynamic resonance along the molecular torsional coordinate between the ground ionic state, D0, and second excited state, D2. Post ionization excitation within the pulse duration transfers the ground state wavepacket to the D2 surface where the wavepacket encounters a three state conical intersection that facilitates the preferred bond dissociation. Time resolved photodissociation experiments measure the dynamics of the launch state, large amplitude oscillations and extended coherence times support the notion that adiabatic ionization populates a majority of the ground ionic surface. Control of the dissociation products is initiated from the launch state by varying the pump wavelength and probe intensity. Elimination of the D0 wavepacket with a 1370 nm reveals additional secondary dynamics that are attributed to wavepacket motion on the D2 surface. Finally, the effect of para substitution on the acetophenone radical cation is explored as a strategy to control the launch state wavepacket dynamics. Suppresion of the wavepacket dynamics are observed with the addition of alkoxy groups whereas extended coherence of the launch state dynamics approaching ~5 ps is observed upon trifluoromethyl substitution. A possible mechanism for the extended coherenece based on coupled torsional rotors is proposed. / Chemistry

Page generated in 0.0598 seconds