• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Membrane fabrication and functionalization for improved removal of monovalent ions from water using electrodialysis

Sheorn, Matthew P 08 December 2023 (has links) (PDF)
Electrodialysis is a membrane separation process that uses an electrical potential to drive the separation. The performance of these systems is largely based on the performance of their ion exchange membranes (IEMs). This research focused on enhancing the performance of IEMs for electrodialysis through surface modification techniques involving chitosan bonded to the surface of commercially available cation exchange membranes (CEMs). The surface functionalization techniques resulted in membranes with improved electrodialysis performance. This research also explored the processing framework to produce functionalized sulfonated PEEK (sPEEK) nanofibers for future consideration as cation exchange membranes. Chitin was deacetylated to form the functionalized biopolymer chitosan, then applied to the surface of CEMs, rendering them more hydrophilic. These membranes were evaluated across several electrodialysis performance metrics. Results demonstrate that adjusting the degree of deacetylation of chitosan to enhance membrane hydrophilicity positively impacted electrodialysis performance. Furthermore, this research evaluated the effectiveness of similarly functionalized membranes to extract Lithium from brine solutions. The chitosan-coated membranes showed improved electrodialysis performance, including enhanced flux, limiting current density, system resistance, selectivity, and fouling resistance. Lastly, the sPEEK nanofibers were produced for the fabrication of ion exchange membranes by manipulating operational parameters to assess their impact. This research presents the successful functionalization of PEEK via sulfonation and electrospinning of the resulting sPEEK. These nanofibers were then pressed to form a solid sPEEK membrane. It was observed that changes in electrical potential and rotational speed influenced fiber diameter and spinnability. A correlation was established between membrane surface hydrophilicity and electrodialysis performance metrics in desalination and lithium extraction applications. This research advanced the understanding of structure-property relationships for CEMs. The research herein proposes techniques for industries such as desalination and lithium extraction that can meet growing demands for clean water and sustainable methods for producing high-value raw material streams.
2

Membrane Electrochemical Treatment of Landfill Leachate: Processes, Performance and Challenges

Liu, Xingjian 13 April 2020 (has links)
Landfilling is the most common approach to dispose of municipal solid wastes but inevitably leads to leachate formation. Persistent UV quenching substances (UVQS) in landfill leachate can affect the effectiveness of UV disinfection in municipal wastewater treatment systems when leachate co-treatment is applied. Membrane electrochemical reactor (MER) treatment was investigated to reduce the UV quenching capability and simultaneously recover resources in the leachate as an effective onsite pre-treatment. Ion-selective membranes were used in this MER to create two different conditions: a low-pH anolyte for organic oxidation and a high-pH catholyte for ammonia recovery. The MER achieved significantly higher removals of both dissolved organic carbon and UV254nm absorbance than membrane-less electrochemical treatment. The MER was able to remove a large percentage of total nitrogen from the leachate while recovering about half of the influent ammonia in the catholyte with less specific energy consumption. The second study coupled MER with Fenton oxidation through providing synergistic benefits with the low solution pH, reduced organics, and ammonia removal. This two-stage coupled system reduced the more leachate COD than the standalone Fenton process treating raw leachate. Also, the usage of chemicals as Fenton reagents has been greatly reduced: FeSO4 and H2O2 by 39%, H2SO4 by 100%, and NaOH by 55%. Consequently, the sludge production was reduced by 51% in weight and 12% in volume. Despite electricity consumption by the MER, the coupled system cost $4.76 per m3 leachate less than the standalone Fenton treatment. More notably, direct Fenton oxidation removed only 21% of ammonia; in comparison, the MER-Fenton system removed ammonia by 98% with the possibility for recovery at a rate of 30.6 -55.2 kg N m-3 reactor d-1. Those results demonstrated that coupling MER with the Fenton process could mitigate some inherent drawbacks of Fenton oxidation such as ineffective ammonia removal, high acid and chemical reagents dose requirements, and a large amount of sludge generation. The third study investigated the formation of total halogenated organics (DBP) and the associated toxicity as the side effect of leachate treatment in the MER. Compared to the 4538±100 µg L-1 from the control membrane-less electrochemical oxidation reactor, the amount of DBP generated in the MER only accounted for 19.1±4.5 % after the same treatment period. The total toxicity value (26.6 ×10-3 ) was low for MER effluent, only 15.1% of that in the control group. Both high pH and high ammonia concentration introduced more DBP mass and toxicity production after MER treatment. DBP concentrations were shown to increase with applied current density and possible temperature raise. With 67.5% of DBP mass concentration and 74.4% of the additive toxicity removal, the granular activated carbon (GAC) electrode system was shown more effective than GAC adsorption alone in remediating DBP harmful effects. This dissertation introduced MER as a promising technology for the treatment of leachate through performance demonstration, process integration and by-product remediation. / Doctor of Philosophy / Municipal solid waste is often disposed of in landfills because of the most economics and convenience. However, one of the most challenging problems is the leachate formation and treatment. In the US, leachate is currently often diluted in domestic wastewater treatment systems; meanwhile, the persistent contaminants in landfill leachate can lower the effectiveness of UV disinfection and result in high cost and permit violation. In this study, the membrane electrochemical reactor (MER) using electricity as the driving force was applied to solve the issue and simultaneously recover valuable resources in the leachate. Membranes as a barrier for selective ions were used in this MER to create two different conditions with different purposes: a low-pH anolyte for organic oxidation and a high-pH catholyte for ammonia recovery. The MER achieved significantly higher contaminants removals than membrane-less electrochemical treatment. The second study coupled MER with one of the established advanced oxidation processes, also known as Fenton oxidation through providing mutual benefits with the low solution pH, reduced organics, and ammonia removal/recovery. This two-stage coupled system reduced the leachate contaminants effectively towards the direct discharge standard. In addition, the usage of chemical reagents, as well as the amount of process residual, has significantly been reduced. The third study investigated the formation of by-products as the side effect of leachate treatment in the MER. Compared to the membrane-less reactor, the undesirable by-products generated in the MER only accounted for one fifth after the same treatment period. A granular activated carbon electrode system was shown effective in remediating the harmful effects. This dissertation introduced MER as a promising technology for the treatment of leachate as one of the toughest wastewaters.
3

STUDY OF THE TRANSPORT OF HEAVY METAL IONS THROUGH CATION-EXCHANGE MEMBRANES APPLIED TO THE TREATMENT OF INDUSTRIAL EFFLUENTS

Martí Calatayud, Manuel César 12 January 2015 (has links)
La presente Tesis Doctoral consiste en la determinación de las propiedades de transporte de diferentes especies catiónicas a través de membranas de intercambio catiónico. Las membranas de intercambio iónico son un componente clave de los reactores electroquímicos y de los sistemas de electrodiálisis, puesto que determinan el consumo energético y la eficiencia del proceso. La utilización de este tipo de membranas para el tratamiento de efluentes industriales no es muy extendida debido a los requisitos de elevada resistencia química y durabilidad que deben cumplir las membranas. Otro asunto importante radica en la eficiencia en el transporte de los iones que se quieren eliminar a través de la membrana. Normalmente, existe una competencia por el paso a través de las membranas entre diferentes especies debido al carácter multicomponente de los efluentes a tratar. Sin embargo, una mejora en las propiedades de las membranas de intercambio iónico permitiría la implantación del tratamiento mediante reactores electroquímicos de efluentes industriales con un contenido importante en compuestos metálicos, tales como los baños agotados de las industrias de cromado. La utilización de una tecnología limpia como la electrodiálisis conllevaría diferentes ventajas, entre las cuales destacan la recuperación de los efluentes para su reutilización en el proceso industrial, el ahorro en el consumo de agua y la disminución de la descarga de contaminantes al medio ambiente. La determinación de las condiciones de operación óptimas así como la mejora de las propiedades de transporte de las membranas constituye el principal tema de la presente investigación. Para ello, se emplearán diferentes tipos de membrana. En primer lugar, se estudiará el comportamiento de las membranas poliméricas comerciales que poseen unas propiedades de resistencia química elevadas, las cuales se tomarán como referencia. De forma paralela, se producirán membranas conductoras de iones a partir de materiales cerámicos económicos, ya que la resistencia de los materiales cerámicos a sustancias oxidantes y muy ácidas es mayor que la de los materiales poliméricos. Este punto constituye la parte más innovadora de la investigación, puesto que la mayoría de las membranas de intercambio iónico comerciales están basadas en materiales poliméricos que no pueden resistir las condiciones específicas de los efluentes industriales. Una vez determinadas las condiciones de operación óptimas, se realizarán ensayos en plantas piloto con el fin de confirmar los resultados obtenidos mediante las técnicas de caracterización y determinar el grado de recuperación y coste energético asociado a los procesos electrodialíticos de tratamiento de efluentes industriales. / Martí Calatayud, MC. (2014). STUDY OF THE TRANSPORT OF HEAVY METAL IONS THROUGH CATION-EXCHANGE MEMBRANES APPLIED TO THE TREATMENT OF INDUSTRIAL EFFLUENTS [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/46004 / TESIS / Premios Extraordinarios de tesis doctorales

Page generated in 0.1269 seconds