• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prise en compte du temps local dans la modélisation des ceintures de radiation terrestres / Magnetic Local Time dependency of the modeling of the Earth radiation belts

Herrera, Damien 09 October 2017 (has links)
Depuis le début de l’ère spatiale avec le lancement du satellite Spoutnik 1 en 1957, les ceintures de radiationterrestres n’ont cessé de faire l’objet d’études du fait de leur dangerosité pour les satellites mais aussi pour l’êtrehumain. En effet, lors d’une forte activité solaire, l’injection de particules dans cet environnement radiatif peut induiredes flux jusqu’à 1000 fois plus élevés que par temps calme. Par conséquent, il est important d’en comprendrela physique ainsi que la dynamique au cours de ce que l’on appelle un orage géomagnétique. Dans ce but, le Département Physique Instrumentation Environnement et Espace (DPhIEE) de l’ONERA développe depuis maintenantplus de 20 ans la famille de modèles Salammbô reproduisant de façon robuste et en trois dimensions la dynamiquedes particules piégées dans ces ceintures. Néanmoins, bien que précis au-delà d’environ 100 keV, la physique et leshypothèses prises en compte dans ce modèle restent insuffisantes en deçà. En effet, aux basses énergies, les ceintures de radiation ne peuvent plus être considérées comme homogènes autour de la Terre. L’objectif de cette thèse a donc été de prendre en compte une quatrième dimension, le temps magnétique local (MLT), afin de mieux reproduire l’évolution des structures fines lors d’un orage géomagnétique. La première partie s’est portée sur l’optimisation du schéma numérique. L’ajout d’une quatrième dimension induit, via l’apparition d’un terme d’advection, une forte diffusion numérique qu’il convient de limiter, tout en tenant compte du temps de calcul. L’équation statistique implémentée a alors été discrétisée selon un schéma de type Beam-Warming du second ordre couplé à un limiteur Superbee, garantissant une propagation satisfaisante de la distribution initiale. Une fois les problèmes numériquesmaitrisés, les différents mécanismes physiques pilotant la dynamique des particules piégées ont été implémentésdans le code, avec une attention toute particulière sur la dépendance en MLT de l’interaction onde-particule. Laprise en compte des champs électriques magnétosphériques fut également nécessaire. En effet, ils constituent l’undes moteurs principaux du mouvement des particules de basses énergies. Le modèle Salammbô 4D a ensuite étévalidé par comparaison avec le modèle 3D déjà existant sur une simulation de l’orage magnétique de Mars 2015.Les résultats ont montré une bonne restitution de la dynamique des ceintures de radiation, avec en plus l’accès à laphase principale de l’orage. Cet évènement a ensuite été modélisé à plus basse énergie pour constater la dynamiqueasymétrique des électrons piégés avec le rôle prépondérant du champ électrique de convection. La comparaison avecles données du satellite THEMIS a montré une bonne modélisation des différents processus physiques, notammentcelui de « dropout » par traversée de la magnétopause. Enfin, la mise en place d’une condition limite dynamiquemodulée par les paramètres du vent solaire et dépendante du MLT ouvre de nombreuses perspectives. / Since the beginning of the Space Era with the launch of Spoutnik 1 spacecraft in 1957, the radiation belts havebeen studied by scientists due to their hazardousness on both spacecrafts and humans. Indeed, particles are injectedduring strong solar activity and can induce fluxes thousand times higher than quiet time ones. Thus, it’s veryimportant to understand the nature of physics-based processes and the consecutive dynamic during a geomagneticstorm. For this purpose, the Department Physics Instrumentation Environment and spacE (DPhIEE) at ONERA hasbeen developing the Salammbô models family for more than 20 years which robustly reproduce in three dimensionsthe dynamics of trapped particles in the radiation belts. Nevertheless, although they are reliable at high energy, thephysics-based processes and the hypothesis taken into account are inadequate at lower energies, below a few hundredsof keV. Indeed, the radiation belts can no longer be considered as homogeneous around the Earth. The aim of thisPhD research work was to take into account a fourth coordinate, the Magnetic Local Time (MLT), in order to betterreproduce the thinnest structures occurring during a geomagnetic storm. The first part of this work focused on theoptimization of the numerical scheme. By the emergence of an advective term, the inclusion of a fourth coordinateinduces a strong numerical diffusion that has to be controlled and limited without deteriorating the computingefficiency. So, the implemented statistical equation was discretized using a Beam-Warming scheme coupled with theSuperbee limiter, which guarantee us an adequate propagation of the initial distribution. Once numerical issues havebeen resolved and controlled, all the different mechanisms driving the dynamics of the trapped particles have beenimplemented into the code, taking into account their MLT dependency, especially for the wave-particle interaction.Taking into account the magnetospheric electric fields was also necessary. Indeed, they correspond to one of themain drivers of the low energy particles motion. Then, the Salammbô 4D model has been validated by a comparisonwith the 3D one on a simulation of the March 2015 geomagnetic storm. The results showed a good restitutionof the dynamics of the radiation belts, refining the storm main phase resolution. Thereafter, this event has beensimulated at lower energy to analyze the asymmetry of the dynamics of trapped electrons highlighting the primerole of the convection electric field. The comparison with data from THEMIS spacecraft showed a good modelingof the different physics-based processes, in particular regarding dropouts as controlled by magnetopause shadowingeffect. Finally, the implementation of a solar wind driven outer boundary condition opens up new prospects.
2

Modélisation du phénomène de diffusion radiale au sein des ceintures de radiation terrestres par technique de changement d’échelle / Modeling the radial diffusion process in the Earth's radiation belts by a scale-changing technique

Lejosne, Solène 30 September 2013 (has links)
Cette étude s’inscrit dans le domaine de la description de la dynamique des ceintures deradiation terrestres. Elle consiste à modéliser le phénomène de diffusion radiale en travaillantavec une résolution spatio-temporelle plus fine que celle utilisée pour décrire la dynamiquedes ceintures par le biais d’une équation de diffusion. La démarche s’est organisée en troistemps. Tout d’abord, l’objectif a été d’étudier le phénomène de diffusion radiale d’un point devue théorique afin de mettre en lumière les principaux pilotes du processus et d’expliciter uneformulation des coefficients de diffusion radiale. Une fois l’expression de ces coefficientsétablie, l’objectif a ensuite été de les quantifier. Pour cela, nous avons développé desprotocoles analytiques et numériques puis des protocoles expérimentaux. Nous avons discutéles résultats obtenus ainsi que les atouts et les limites de ces protocoles. Cette étude met enévidence le rôle central de l’asymétrie des variations du champ électromagnétique et deschamps électriques induits dans le processus de diffusion radiale. Elle propose des pistes pourla quantification numérique et expérimentale de ces deux pilotes. Elle apporte également unregard critique sur les travaux de la littérature. Elle ouvre la voie pour une nouvellequantification des coefficients de diffusion basée sur une modélisation adéquate de ladynamique de l’environnement électromagnétique / This study falls within the field of the Earth’s radiation belt dynamics. It consists of modelingthe radial diffusion process based on a spatiotemporal resolution higher than the resolution atwhich radiation belt dynamics are described in terms of a diffusion equation. The approachhas been organized in three parts. First, we described radial diffusion theoretically,highlighting the main drivers of the phenomenon and giving a ready-made formula of theradial diffusion coefficients. Then, based on this formula, we aimed to quantify the radialdiffusion coefficients. In order to reach this goal, we developed analytical and numericalprocedures, and then, observational procedures. Finally, we discussed the results and the prosand cons of each method. This study highlights the central role of asymmetric variations ofthe electromagnetic fields and induced electric fields in the driving of the intensity of theradial diffusion process. It provides tracks for numerical and experimental quantification ofthese two drivers. It also provides tools for a critical review of the literature. It paves the wayfor a more accurate determination of radial diffusion coefficients based on a more precisedescription of the electromagnetic environment and its variations.
3

Impact des structures du vent solaire sur les ceintures de radiation Terrestres / Impact of the solar wind structures on the terrestrial radiation belts

Benacquista, Rémi 23 November 2017 (has links)
Les ceintures de radiation correspondent à la région de la magnétosphère dans laquelle se trouvent les particules de hautes énergies. Le couplage entre le vent solaire et la magnétosphère donne lieu à des variations des flux de particules sur plusieurs ordres de grandeurs. L’objectif de cette thèse est d’observer et caractériser ces variations de flux d’électrons au passage de différents types d’événements tels que les régions d’interaction en co-rotation (CIRs) et les éjections de masse coronale interplanétaires (ICMEs). Pour cela, nous avons traité et analysé les données de plusieurs types: paramètres du vent solaire, indices géomagnétiques et flux d’électrons dans les ceintures de radiation. Dans les trois premiers chapitres, nous rendons compte de la complexité de l’environnement spatial Terrestre et présentons les différentes données utilisées. Les travaux de thèse sont ensuite organisés en quatre chapitres. Premièrement, nous utilisons les mesures des satellites NOAA-POES afin de caractériser les flux d’électrons dans les ceintures. Nous étudions ensuite les différences de variations de flux causées par les CIRs et les ICMEs en fonction de l’énergie des électrons et du paramètre L*. Après avoir montré le fort lien entre les intensités d’orages magnétiques et les variations de flux, nous nous focalisons sur les ICMEs et la variabilité des orages qu’elles causent. Enfin, nous insistons sur l’importance des enchaînements d’événements. Après avoir quantifié la forte tendance qu’ont les ICMEs à former des séquences, nous réalisons une étude statistique sur les orages qu’elles causent, puis trois études de cas afin d’illustrer leurs effets sur les ceintures. / The radiation belts are the toroidal region within the inner magnetosphere where high energetic particles are located. The coupling between the solar wind and the magnetosphere leads to strong variations of particle fluxes that can therefore increase or decrease over several orders of magnitude. The aim of this thesis is to observe and characterize the variations of fluxes during the crossing of several types of events originating from the sun such as Corotating Interaction Regions (CIRs) and Interplanetary Coronal Mass Ejections (ICMEs). To do so, we processed and analyzed the data of various types : solar wind parameters, geomagnetic indices, and electron fluxes within the radiation belts. In the three first chapters, we report on the complexity of the Terrestrial space environment and we present the Solar-Terrestrial system and the data used. Then, our work is organized around four chapters. First, we characterized the electron fluxes within the radiation belts as measured by the NOAA-POES spacecrafts. Then, we studied the difference between the variations of fluxes caused by the CIRs and the ICMEs depending on the energy and the L* parameter. After establishing strong links between the intensity of magnetic storms and the variations of fluxes, we focused on the ICMEs and the variability of the related magnetic storms. Eventually, we emphasized the importance of the sequences of events. After quantifying the trend of the ICMEs to form sequences, we performed a statistical study on the magnetic storms caused by such sequences. Finally three study cases were performed in order to illustrate the various possible effects on the radiation belts.
4

Développement de la Super Station LOFAR & observations planétaires avec LOFAR

Girard, Julien N. 21 May 2013 (has links) (PDF)
Les développements techniques récents en radioastronomie au sol ont permis l'émergence de nombreux nouveaux projets. LOFAR (le "LOw Frequency ARray") est un interféromètre de réseaux phasés comptant parmi ces nouveaux radiotélescopes géants. Son architecture distribuée à travers l'Europe comprend plusieurs milliers d'éléments regroupés en "stations". Il permet d'étudier l'Univers dans la fenêtre radio ~20-250 MHz, inexplorée avec une très haute sensibilité et de très hautes résolutions angulaire, temporelle et spectrale. La station LOFAR de Nançay a permis à la communauté française de participer aux projets scientifiques "clefs" de LOFAR. Elle a également suscité un développement instrumental original visant à augmenter significativement les performances de LOFAR aux basses fréquences (≤80 MHz) en formant un nouveau réseau géant d'antennes sensibles: la "Super Station LOFAR" (LSS). Le premier volet de cette thèse présente les études de conception et de réalisation d'un démonstrateur pour la LSS à trois échelles: l'antenne élémentaire, le "mini-réseau" d'une vingtaine d'antennes et la distribution globale de 96 mini-réseaux à Nançay. Ce projet est conçu pour être totalement compatible avec le réseau LOFAR et étendre ses performances (en particulier pour ses objectifs (exo)planétaires), et pour constituer un nouvel instrument sensible et autonome à Nançay. Le second volet porte sur le développement d'un mode d'imagerie planétaire avec l'interféromètre LOFAR et son application à l'étude du rayonnement synchrotron des ceintures de radiation de Jupiter. Ce mode a rendu possible la formation des toutes premières images planétaires résolues dans la bande 127 - 172 MHz.
5

Méthodes déterministes de résolution des équations de Vlasov-Maxwell relativistes en vue du calcul de la dynamique des ceintures de Van Allen

Le Bourdiec, Solène 30 March 2007 (has links) (PDF)
Les satellites artificiels baignent dans un environnement radiatif hostile qui conditionne en partie leur fiabilité et leur durée de vie en opération : les ceintures de Van Allen. Afin de les protéger, il est nécessaire de caractériser la dynamique des électrons énergétiques piégés dans les ceintures radiatives. Elle est déterminée essentiellement par les interactions entre les électrons énergétiques et les ondes électromagnétiques existantes. <br /><br />Le travail de cette thèse a consisté à concevoir un schéma numérique original pour la résolution du système d'équations modélisant ces interactions : les équations de Vlasov-Maxwell relativistes. Notre choix s'est orienté vers des méthodes d'intégration directe. Nous proposons trois nouvelles méthodes spectrales pour discrétiser en impulsion les équations : une méthode de Galerkin et deux méthodes de type collocation. Ces approches sont basées sur des fonctions de Hermite qui ont la particularité de dépendre d'un facteur d'échelle permettant d'obtenir une bonne résolution en vitesse. <br /><br />Nous présentons dans ce manuscript les calculs conduisant à la discrétisation et à la résolution du problème de Vlasov-Poisson monodimensionnel ainsi que les résultats numériques obtenus. Puis nous étudions les extensions possibles des méthodes au problème complet relativiste. Afin de réduire les temps de calcul, une parallélisation et une optimisation des algorithmes ont été mises en \oe uvre. Enfin, les calculs de validation du code 1Dx-3Dv, à partir d'instabilités de types Weibel et whistlers, à une ou deux espèces d'électrons, sont détaillés.
6

Physical and numerical modeling of the dynamics of high-energy electrons trapped in the outer radiation belt of the Earth’s magnetosphere / Modélisation physique et numérique de la dynamique des électrons de haute énergie piégés dans la ceinture de radiation externe de la magnétosphère terrestre

Loridan, Vivien 17 October 2018 (has links)
Les satellites sont vulnérables aux particules de forte énergie piégées dans les ceintures de Van Allen. Afin d’en assurer la protection, il est nécessaire de prédire avec précision la dynamique des électrons au sein de la magnétosphère. Dans un premier temps nous proposons une méthode originale de résolution analytique de l’équation de Fokker-Planck réduite qui modélise le transport et les pertes des électrons de la magnétosphère interne. La résolution repose sur une technique de décomposition spectrale. Si la solution analytique s’avère utile pour mettre en exergue certaines propriétés physiques des ceintures de radiation, elle est également pertinente pour valider le code numérique de résolution de l’équation de Fokker-Planck réduite, développé durant la thèse. Ce dernier nous amène à généraliser l’étude précédente en illustrant l’évolution des flux d’électrons pour diverses énergies et positions. Nous prouvons notamment que la structure des ceintures de radiation ainsi que leur temps d’évolution ne dépendent que de quelques facteurs bien choisis. Dans la perspective de reproduire un événement particulier de retour au calme après un orage magnétique, mesuré par les satellites de la NASA dédiés aux ceintures de radiation, nous sommes en mesure de simuler la précipitation des électrons dans l’atmosphère terrestre causée par les interactions avec les ondes électromagnétiques de la magnétosphère. L’utilisation de conditions bâties sur des données empiriques et spécifiques à la période en question nous permet de corroborer les flux observés. Enfin, l’influence du champ magnétique terrestre sur la dynamique des ceintures de radiation est étudiée sous divers aspects. Nous nous concentrons sur la ceinture externe pour comprendre comment les asymétries du champ magnétique, considérablement façonnées par l’activité solaire, affectent notre manière de concilier théorie et observations. Nous explorons également l’importance de certains processus diffusifs nouveaux et cachés, qui émergent à cause de l’irrégularité naturelle du champ magnétique au plus proche voisinage de la Terre. / Satellites are vulnerable to high-energy particles trapped in the Van Allen belts. To ensure their protection, it is necessary to predict properly the electron dynamics in the magnetosphere. We first propose an original method to find the analytical solution of the reduced Fokker-Planck equation that models the transport and loss of electrons in the inner magnetosphere. The resolution relies on an eigenfunction expansion approach. If the analytical solution is proven to be useful at uncovering some of the physical properties of the radiation belts, it is also relevant to validate the numerical code that solves the reduced Fokker-Planck equation, which has been developed during the PhD. The latter code is used to generalize the previous study in illustrating the evolution of the electron fluxes for various energies and locations. We demonstrate that the structure of the radiation belts as well as their dynamical timescales only depend on a few well-chosen parameters. In the perspective of reproducing a specific storm-recovery event reported by the NASA Van Allen Probes, we are able to simulate the electron scattering in the Earth’s atmosphere due to the interaction with magnetospheric electromagnetic waves. The consideration of data-driven and event-specific conditions enables us to corroborate the observed fluxes. Finally, various influences of the Earth’s magnetic field on the dynamics of the radiation belts are investigated. We focus on the outer belt to see how the magnetic field asymmetries, which are strongly shaped by solar activity, affect the way of conciliating theory and observations. We also explore the importance of new hidden diffusive processes that emerge due to the natural irregularity of the magnetic field in the closest vicinity of the Earth.

Page generated in 0.118 seconds