• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 21
  • 18
  • 10
  • 2
  • Tagged with
  • 151
  • 151
  • 52
  • 33
  • 33
  • 28
  • 23
  • 22
  • 19
  • 18
  • 16
  • 15
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Functional characterization of the role of Imp, a Drosophila mRNA binding protein, during oogenesis

Geng, Cuiyun 27 April 2015 (has links)
Establishment of cell polarity requires the involvement of several posttranscriptional regulatory mechanisms, including mRNA localization and translational control. A family of highly conserved RNA binding proteins in vertebrates, VICKZ (V̲g1RBP/V̲era, I̲MP-1, 2, 3, C̲RD-BP, K̲OC, Z̲BP-1) proteins, has been shown to act in these two processes. Previous studies of the posttranscriptional mechanisms mediated by VICKZ family members have been largely limited by the lack of genetic approaches in certain vertebrate systems. Identification of Imp, the Drosophila member of the VICKZ family, opened the possibility to use genetic approaches to investigate the roles of a VICKZ family member in mRNA localization and translational control. In this dissertation, we show that Imp is associated with Squid and Hrp48, two heterogeneous proteins (hnRNP) that complex with one another to regulate localized expression of gurken (grk). In addition, Imp binds grk mRNA with high affinity in vitro and is concentrated at the site of grk localization in midstage oocytes. Mutation of the Imp gene does not substantially alter grk expression, but does partially suppress the grk mis-expression phenotype of fs(1)k10 mutants. In contrast, overexpression of Imp in germ line cells results in mislocalization of grk mRNA and protein. The opposing effects of reduced and elevated Imp activities on grk expression suggest that Imp acts in regulation of grk expression, but in a redundant way. To further explore the mechanisms by which localized expression of grk is regulated by Imp, a deficiency screen was conducted to search for dominant modifiers of the dorsalized phenotype resulting from Imp overexpression. Twelve genomic regions were identified to contain dominant modifiers of the Imp overexpression phenotype. Further characterization of mutants of genes within these genomic regions led to identification of five modifiers, including cyclin E (cycE), E2f transcriptional factor 1 (E2f1), lingerer (lig), snail (sna) and mushroom body expressed (mub). E2f1 encodes a transcriptional factor that is involved in regulating the G1 to S phase transition during mitosis. Mutation of E2f1 results in altered grk mRNA and protein distribution within oocyte, revealing a role for this gene in regulation of grk expression. / text
52

Phenomenological Models in Biological Physics: Cell Polarity and rDNA Transcription

Tan, Rui Zhen January 2011 (has links)
Mathematical modeling has been important in the study of biology. Two main challenges with modeling biological problems are the lack of quantitative data and the complexity of biological problems. With the invention of new techniques, like single molecule transcript counting, very quantitative gene expression measurements at the level of single transcript in individual cells can now be obtained. Biological systems are very complex, involving many reactions and players with unknown reaction rates. To reduce the complexity, scientists have often proposed simplified phenomenological models that are tractable and capture the main essence of the biological systems. These simplified models allow scientists to describe the behavior of biological systems with a few meaningful parameters. In this thesis, by integrating quantitative single-cell measurements with phenomenological modeling, we study the (1) roles of Wnt ligands and receptors in sensing and amplification in Caenorhabditis elegans’ P cells and (2) regulation of rDNA transcription in Saccharomyces cerevisiae. The initiation of cell polarity consists of two sequential processes: an external gradient is first sensed and then the resulting signal is amplified by intracellular signaling. It is challenging to determine the role of proteins towards sensing and amplification as these two processes are intertwined. We integrated quantitative single-cell measurements with phenomenological modeling to determine the roles of Wnt ligands and receptors in sensing and amplification in the P cells of Caenorhabditis elegans. By systematically exploring how P cell polarity is altered in Wnt ligand and receptor mutants, we inferred that ligands predominantly affect sensing, whereas receptors are needed for both sensing and amplification. Most eukaryotes contain many tandem repeats of ribosomal RNA genes of which only a subset is transcribed at any given time. Current biochemical methods allow for the determination of the fraction of transcribing repeats (ON) versus nontranscribing repeats (OFF) but do not provide any dynamical information. By using the single molecule transcript counting technique complemented with theoretical modeling, we determine the rate of switching from OFF to ON (activation rate) and the average number of RNA molecules produced during each transcriptional burst (burst size). We explore how these two variables change in mutants and different growth conditions.
53

The Role Of The Small GTPASE RAB14 In Apical ProteinTraffic And Maintenance Of Cell Polarity

Jacobson, Noelle C January 2005 (has links)
The establishment and maintenance of cell polarity during development is an active process that requires specific protein sorting and targeting to apical and basolateral regions of the cell. Our lab has identified an apical early endosomal marker, endotubin, in developing rat intestine, which we have used to label specialized apical endosomal tubules, and to probe for components of the apical sorting machinery. Studies with endotubin have implicated the small GTPase Rab14 as part of the sorting machinery for apical targeting. The current work pursues further study of the interaction between Rab14 and endotubin, as well as the role for Rab14 in the establishment of cell asymmetry. Interestingly, even nonpolarized cells may utilize polarized trafficking components for proper sorting and dynamics of endotubin.
54

Functional analysis of the Drosophila gene smallish (CG43427)

Beati, Seyed Amir Hamze 13 March 2013 (has links)
No description available.
55

The Role of Farnesyltransferase β-subunit in Neuronal Polarity in Caenorhabditis Elegans

Carr, David, A. 07 February 2013 (has links)
Little is known about the molecular components and interactions of the planar cell polarity pathway that regulate neuronal polarity. This study uses a prkl-1 induced backwards locomotion defect as an array to perform a prkl-1 suppressor screen in C. elegans looking for new components of the planar cell polarity pathway involved in the neuronal polarization of VC4 and VC5. The screen discovered twelve new alleles of vang-1, one new allele of fntb-1 and five new mutations in unknown polarity genes. fntb-1 encodes for the worm ortholog of Farnesyltransferase β-subunit and is important for neuronal polarization. Acting cell and non-cell autonomously, fntb-1 regulates the function and localization of prkl-1 through the recognition of a CAAX motif. Therefore, fntb-1 modifies prkl-1 to regulate the neuronal polarity of VC4 and VC5.
56

Understanding Mechanics and Polarity in Two-Dimensional Tissues

Staple, Douglas 28 March 2012 (has links) (PDF)
During development, cells consume energy, divide, rearrange, and die. Bulk properties such as viscosity and elasticity emerge from cell-scale mechanics and dynamics. Order appears, for example in patterns of hair outgrowth, or in the predominately hexagonal pattern of cell boundaries in the wing of a fruit fly. In the past fifty years, much progress has been made in understanding tissues as living materials. However, the physical mechanisms underlying tissue-scale behaviour are not completely understood. Here we apply theories from statistical physics and fluid dynamics to understand mechanics and order in two-dimensional tissues. We restrict our attention to the mechanics and dynamics of cell boundaries and vertices, and to planar polarity, a type of long-ranged order visible in anisotropic patterns of proteins and hair outgrowth. Our principle tool for understanding mechanics and dynamics is a vertex model where cell shapes are represented using polygons. We analytically derive the ground-state diagram of this vertex model, finding it to be dominated by the geometric requirement that cells be polygons, and the topological requirement that those polygons tile the plane. We present a simplified algorithm for cell division and growth, and furthermore derive a dynamic equation for the vertex model, which we use to demonstrate the emergence of quasistatic behaviour in the limit of slow growth. All our results relating to the vertex model are consistent with and build off past calculations and experiments. To investigate the emergence of planar polarity, we develop quantification methods for cell flow and planar polarity based on confocal microscope images of developing fly wings. We analyze cell flow using a velocity gradient tensor, which is uniquely decomposed into terms corresponding to local compression, shear, and rotations. We argue that a pattern in an inhomogeneously flowing tissue will necessarily be reorganized, motivating a hydrodynamic theory of polarity reorientation. Using such a coarse-grained theory of polarity reorientation, we show that the quantified patterns of shear and rotation in the wing are consistent with the observed polarity reorganization, and conclude that cell flow reorients planar polarity in the wing of the fruit fly. Finally, we present a cell-scale model of planar polarity based on the vertex model, unifying the themes of this thesis.
57

Regulation of Planar Cell Polarity and Vangl2 Trafficking by Tmem14a

Chea, Evelyn 21 November 2012 (has links)
Planar cell polarity (PCP) refers to the coordinated orientation, movement, or structure of cells within the plane of a tissue. Zebrafish PCP mutants such as the vangl2 mutant exhibit defects in convergent extension, neural tube morphogenesis, and ciliary positioning. Tmem14a is a putative tetraspanin protein that was identified as an potential interactor of Vangl2 in a membrane yeast-two hybrid screen. GFP-tagged versions of Tmem14a are localized to the trans-Golgi network in zebrafish neuroepithelial cells. Knockdown of Tmem14a activity results in convergent extension defects, an ectopic accumulation of cells in the neural tube, and disorganized cilia. The localization of GFP-tagged Tmem14a to the trans-Golgi network suggested that Tmem14a plays a role in the trafficking of core PCP components to the cell membrane. Indeed, the membrane localization of GFP-Vangl2 was disrupted in Tmem14a morphants. Thus, Tmem14a is an interactor of Vangl2 and a novel regulator of vertebrate planar cell polarity signaling.
58

Regulation of Planar Cell Polarity and Vangl2 Trafficking by Tmem14a

Chea, Evelyn 21 November 2012 (has links)
Planar cell polarity (PCP) refers to the coordinated orientation, movement, or structure of cells within the plane of a tissue. Zebrafish PCP mutants such as the vangl2 mutant exhibit defects in convergent extension, neural tube morphogenesis, and ciliary positioning. Tmem14a is a putative tetraspanin protein that was identified as an potential interactor of Vangl2 in a membrane yeast-two hybrid screen. GFP-tagged versions of Tmem14a are localized to the trans-Golgi network in zebrafish neuroepithelial cells. Knockdown of Tmem14a activity results in convergent extension defects, an ectopic accumulation of cells in the neural tube, and disorganized cilia. The localization of GFP-tagged Tmem14a to the trans-Golgi network suggested that Tmem14a plays a role in the trafficking of core PCP components to the cell membrane. Indeed, the membrane localization of GFP-Vangl2 was disrupted in Tmem14a morphants. Thus, Tmem14a is an interactor of Vangl2 and a novel regulator of vertebrate planar cell polarity signaling.
59

Flamingo/Starry Night in embryonic abdominal sensory axon development of Drosophila

Steinel, Martin Claus January 2008 (has links)
The seven-pass transmembrane atypical cadherin, Flamingo (also known as Starry Night) is evolutionally conserved in both structure and function in vertebrates and invertebrates. It plays important roles during the establishment of planar cell polarity (PCP) of epithelial tissues and during the development of axons and dendrites in both peripheral and central neurons. / This thesis looks at the role of Flamingo/Starry Night in axon growth and guidance in the embryonic abdominal peripheral nervous system (PNS) of Drosophila. It describes the expression pattern of Flamingo in the PNS and its environment. A combination of single cell labelling and immunohistochemical techniques was used to define the effect of mutations in flamingo as well as several genes coding for potential Flamingo interaction partners. Rescue- and over-/mis-expression experiments featuring targeted expression of either a wild type version or mutant versions of flamingo provide information on the cellular and molecular mechanisms by which Flamingo regulates sensory axon development. Loss of Flamingo function results in a highly penetrant axon stall phenotype. Both sensory and motor axons frequently halt their advance early along their normal trajectories. Flamingo appears to mediate an axon growth promoting signal upon contact of sensory growth cones with specific early intermediate targets. Expression of Flamingo in sensory neurons is sufficient to rescue the mutant sensory axon phenotype. This rescue is at least partially independent of most of the extracellular region of the Flamingo protein. While Flamingo was previously found to have homophilic adhesion properties in vitro and appears to function by a homophilic mechanism during the neurite development of several types of neurons, this study supports a heterophilic signalling mechanism by which Flamingo fulfils its role in abdominal sensory axon growth promotion.
60

Structure and interactions of the juxtamembrane domain of the epidermal growth factor receptor /

Choowongkomon, Kiattawee. January 2005 (has links)
Thesis (Ph. D.)--Case Western Reserve University, 2005. / [School of Medicine] Department of Physiology and Biophysics. Includes bibliographical references. Available online via OhioLINK's ETD Center.

Page generated in 0.0734 seconds